细化搜索
结果 1-10 的 192
Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense 全文
2022
Zhang, Jiazhu | Kong, Lingwei | Zhao, Yan | Lin, Qingming | Huang, Shaojie | Jin, Yafang | Ma, Zengling | Guan, Wanchun
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L⁻¹) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRₘₐₓ, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRₘₐₓ, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L⁻¹) and high MP (10 mg L⁻¹) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
显示更多 [+] 显示较少 [-]Bioelectrochemical system for dehalogenation: A review 全文
2022
Zhu, Xuemei | Wang, Xin | Li, Nan | Wang, Qi | Liao, Chengmei
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
显示更多 [+] 显示较少 [-]Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission 全文
2022
Ye, Jinyu | Gao, Huan | Wu, Junkang | Yang, Guangping | Duan, Lijie | Yu, Ran
The extensive use of nano-TiO₂ has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N₂O emissions after long-term nano-TiO₂ exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO₂ on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO₂ exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N₂O emissions unexpectedly increased. The promoted N₂O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N₂O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO₂ from the influent, the nitrogen transformation efficiencies and the N₂O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
显示更多 [+] 显示较少 [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components 全文
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
显示更多 [+] 显示较少 [-]Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis 全文
2022
Patel, Monika | Parida, Asish Kumar
Arsenic (As) is a highly toxic metalloid adversely affecting the environment, human health, and crop productivity. The present study assessed the synergistic effects of salinity and As on photosynthetic attributes, stomatal regulations, and metabolomics responses of the xero-halophyte Salvadora persica to decipher the As-salinity cross-tolerance mechanisms and to identify the potential metabolites/metabolic pathways involved in cross-tolerance of As with salinity. Salinity and As stress-induced significant stomatal closure in S. persica suggests an adaptive response to decrease water loss through transpiration. NaCl supplementation improved the net photosynthetic rate (by +39%), stomatal conductance (by +190%), water use efficiency (by +55%), photochemical quenching (by +37%), and electron transfer rate (54%) under As stress as compared to solitary As treatment. Our results imply that both stomatal and non-stomatal factors account for a reduction in photosynthesis under high salinity and As stress conditions. A total of 64 metabolites were identified in S. persica under salinity and/or As stress, and up-regulation of various metabolites support early As-salinity stress tolerance in S. persica by improving antioxidative defense and ROS detoxification. The primary metabolites such as polyphenols (caffeic acid, catechin, gallic acid, coumaric acid, rosmarinic acid, and cinnamic acid), amino acids (glutamic acid, cysteine, glycine, lysine, phenylalanine, and tyrosine), citrate cycle intermediates (malic acid, oxalic acid, and α-ketoglutaric acid), and most of the phytohormones accumulated at higher levels under combined treatment of As + NaCl compared to solitary treatment of As. Moreover, exogenous salinity increased glutamate, glycine, and cysteine, which may induce higher synthesis of GSH-PCs in S. persica. The metabolic pathways that were significantly affected in response to salinity and/or As include inositol phosphate metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, amino acid metabolism, and glutathione metabolism. Our findings indicate that inflections of various metabolites and metabolic pathways facilitate S. persica to withstand and grow optimally even under high salinity and As conditions. Moreover, the addition of salt enhanced the arsenic tolerance proficiency of this halophyte.
显示更多 [+] 显示较少 [-]Biochemical alterations caused by lanthanum and gadolinium in Mytilus galloprovincialis after exposure and recovery periods 全文
2022
Cunha, Marta | Louro, Patricia | Silva, Mónica | Soares, Amadeu M.V.M. | Pereira, Eduarda | Freitas, Rosa
The increasing use of rare earth elements (REEs) in electric and electronic equipment has been associated with the presence of these elements in aquatic systems. The present study aimed to evaluate the toxicity of two REEs, Lanthanum (La) and Gadolinium (Gd), towards the mussel species Mytilus galloprovincialis. For this, the toxicity was assessed after a short-term exposure (14 days) to an environmentally relevant concentration of each element (10 μg/L), followed by a recovery period (14 days) in the absence of any contaminant. The measured biomarkers included energy-related parameters, activity of antioxidant and biotransformation enzymes, indicators of oxidative damage, levels of oxidized glutathione and neurotoxicity. After exposure mussels accumulated more La (0.54 μg/g) than Gd (0.15 μg/g). After recovery higher concentration decrease was observed for Gd (≈40% loss) compared to La exposed mussels (≈30% loss) which may be associated with lower detoxification capacity of mussels previously exposed to La. Mussels increased their metabolism (i.e., higher electron transport system activity) only after the exposure to Gd. Exposure to La and Gd resulted into lower energy expenditure, while when both elements were removed glycogen and protein concentrations decreased to values observed in non-contaminated mussels. Antioxidant and biotransformation capacity was mainly increased in the presence of Gd. This defense response avoided the occurrence of cellular damage but still loss of redox balance was found regardless the contaminant, which was re-established after the recovery period. Neurotoxicity was only observed in the presence of Gd with no effects after the recovery period. Results showed that a short-term exposure to La and especially to Gd can exert deleterious effects that may compromise specific biochemical pathways in aquatic species, such as M. galloprovincialis, but under low concentrations organisms can be able to re-establish their biochemical status to control levels after a recovery period.
显示更多 [+] 显示较少 [-]Removal of sulfamethoxazole and tetracycline in constructed wetlands integrated with microbial fuel cells influenced by influent and operational conditions 全文
2021
Wen, Huiyang | Zhu, Hui | Xu, Yingying | Yan, Baixing | Shutes, B. (Brian) | Bañuelos, Gary | Wang, Xinyi
Constructed wetlands integrated with microbial fuel cells (MFC-CWs) have been recently developed and tested for removing antibiotics. However, the effects of carbon source availability, electron transfer flux and cathode conditions on antibiotics removal in MFC-CWs through co-metabolism remained unclear. In this study, four experiments were conducted in MFC-CW microcosms to investigate the influence of carbon source species and concentrations, external resistance and aeration duration on sulfamethoxazole (SMX) and tetracycline (TC) removal and bioelectricity generation performance. MFC-CWs supplied with glucose as carbon source outperformed other carbon sources, and moderate influent glucose concentration (200 mg L⁻¹) resulted in the best removal of both SMX and TC. Highest removal percentages of SMX (99.4%) and TC (97.8%) were obtained in MFC-CWs with the external resistance of 700 Ω compared to other external resistance treatments. SMX and TC removal percentages in MFC-CWs were improved by 4.98% and 4.34%, respectively, by increasing the aeration duration to 12 h compared to no aeration. For bioelectricity generation performance, glucose outperformed sodium acetate, sucrose and starch, with the highest voltages of 386 ± 20 mV, maximum power density (MPD) of 123.43 mW m⁻³, and coulombic efficiency (CE) of 0.273%. Increasing carbon source concentrations from 100 to 400 mg L⁻¹, significantly (p < 0.05) increased the voltage and MPD, but decreased the internal resistance and CE. The highest MPD was obtained when the external resistance (700 Ω) was close to the internal resistance (600.11 Ω). Aeration not only improved the voltage and MPD, but also reduced the internal resistance. This study demonstrates that carbon source species and concentrations, external resistances and aeration duration, all play vital roles in regulating SMX and TC removal in MFC-CWs.
显示更多 [+] 显示较少 [-]Efficient removal of estrogenic compounds in water by MnIII-activated peroxymonosulfate: Mechanisms and application in sewage treatment plant water 全文
2021
Jia, Daqing | Li, Qinzhi | Hanna, Khalil | Mailhot, Gilles | Brigante, Marcello
In this paper, the degradation of three endocrine-disrupting chemicals (EDCs): bisphenol A (BPA), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by manganite (γ-MnOOH) activated peroxymonosulfate (PMS) was investigated. Preliminary optimisation experiments showed that complete degradation of the three EDCs was achieved after 30 min of reaction using 0.1 g L⁻¹ of γ-MnOOH and 2 mM of PMS. The degradation rate constants were determined to be 0.20, 0.22 and 0.15 min⁻¹ for BPA, E2 and EE2, respectively. Combining radical scavenging approaches, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses, we revealed for the first time that about 40% of EDCs degradation can be attributed to heterogeneous electron transfer reaction involving freshly generated Mn(IV), and 60% to sulfate radical degradation pathway. The influence of various inorganic ions on the γ-MnOOH/PMS system indicated that removal efficiency was slightly affected by chloride and carbonate ions, while nitrate and nitrite ions had negligible impacts. The application of γ-MnOOH/PMS system in real sewage treatment plant water (STPW) showed that degradation rate constants of EDCs decreased to 0.035–0.048 min⁻¹ and complete degradation of the three EDCs after 45 min. This study provides new insights into the reactivity of combined γ-MnOOH and PMS, and opens new ways for the application of Mn-bearing species in wastewater treatment technologies.
显示更多 [+] 显示较少 [-]Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron 全文
2020
Deng, Shanshan | Bao, Yixiang | Cagnetta, Giovanni | Huang, Jun | Yu, Gang
Perfluorohexane sulfonate (PFHxS) has been newly recommended to be added into the Stockholm Convention on persistent organic pollutants (POPs). As one of the major perfluoroalkyl pollutants, its long half-time in human serum and neurotoxicity are cause for significant concern. Although mechanochemical degradation has been evaluated as a promising ecofriendly technology to treat pollutants, the extraordinary stability of poly- and perfluoroalkyl substances (PFASs) raises harsh requirements for co-milling reagents. In the present study, zero-valent iron (ZVI) and ferrate(VI) were for the first time used as the co-milling reagents to degrade PFHxS. When ZVI and ferrate(VI) were used alone, both the degradation and defluorination efficiencies were low. However, after milling at the optimum ratio (ferrate(VI):ZVI = 1:2) for 4 h, the synergistic effect of ZVI and ferrate(VI) resulted in almost complete degradation (100%) and defluorination (95%). Two points can account for this excellent performance: (1) the mechanochemical energy input in the system initiates and prominently promotes related reactions; and (2) the active species generated from the reactions among ZVI, ferrate(VI) and other high-valent iron species will accelerate the process of electron transfer. The sulfonate group comprises the favorable attack sites, as corroborated by both the identified intermediates and quantum chemical calculations. The homolysis of the C–S bond is not only the triggering step, but also the rate-limiting step. In summary, the present work confirms the feasibility and underlying mechanism of the ZVI–ferrate(VI) co-milling system to defluorinate PFHxS, which might be a promising technology to treat PFASs in solid wastes.
显示更多 [+] 显示较少 [-]Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water 全文
2020
Jiang, Nan | Wang, Yuchao | Zhao, Quanlin | Ye, Zhengfang
Via the thermal sintering, a nanocrystalline IrO₂ coating was formed on the Ti substrate to successfully prepare a Ti/IrO₂ electrode. Based on the electrochemical analysis, the prepared Ti/IrO₂ electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV–vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO₂ electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO₂ function group in the TNT red water was degraded completely.
显示更多 [+] 显示较少 [-]