细化搜索
结果 1-10 的 54
Impact of Cobalt Oxide Nanoparticles Dispersed in Water in Diesel Emulsion in Reduction of Diesel Engine Exhaust Pollutants
2022
M. D., Anil | Hemadri, Vinayak | Swamy, Mrityunjaya
The present work is aimed at decreasing pollutants emitted by diesel engine exhaust tailpipe and enhancing performance by incorporating cobalt oxide nanoparticles in water emulsified diesel. Water concentration of 5% and 10% is used to prepare various WD emulsion blends, with nano particle dosage levels of 50PPM and 100PPM. High speed homogenizer and ultrasonicator devices are used to disperse water droplets in diesel. Surfactant mixture of span80 and tween20 is used to achieve long term stability of emulsified fuel. The functional groups of emulsified fuel are analysed using FTIR spectroscopy. The characterization of cobalt oxide nanoparticles is carried using scanning electron microscope. Physiochemical properties such as calorific value, density, viscosity of emulsion blends and pure diesel are determined and compared. Experimental results reveal that addition of cobalt oxide nanoparticles in emulsified fuel with increased dosage of 100PPM shows 23%, 33.3%, 25%, and 44.6% reduction in NOX, HC, CO and smoke emission compared to pure diesel. The improvement in BTE and BSFC were observed for all emulsion blends.
显示更多 [+] 显示较少 [-]Investigation of Atmospheric Pattern and Simulation of the Frontal Sandstorm Emission over Eastern and Southeastern Iran (case study 23 & 24 April 2019)
2021
Asghari, M. | Meshkatee, A. | Ranjbar Saadat Abadi, A. | Moradi, M.
The present study simulates the frontal dust storm by means of WRF-Chem model and AFWA emission scheme between April 23 and 24, 2019. It then applies reanalysis data (ERA5) to analyze this case from a synoptic perspective. The simulation results show that the model have been accurately characterized first by the onset of dust from the south-east of the country in Kerman Province and then via its transmission to large areas of the east and south-east. The model output also fits well with satellite images. A quantitative comparison of PM10 concentration of the model with actual values shows that the PM10 model estimates are larger than actual values, though it predicts the trend of concentration changes well. Examining the synoptic maps, the isobars’ curve, wind direction change, and temperature advection in the area reveals the presence of atmospheric fronts within a strong dynamic low-pressure system. This causes high temperature and pressure gradients, in turn speeding up the wind within the region. Results from the synoptic analysis show that by passing the frontal system and behind the cold front, a dust mass is formed, which gradually spreads in eastern and the southeastern regions of Iran. In this case, extreme pressure gradient, cold front passage, low-level jet, wind gust on dry areas of dry Hamoon wetland, and cold air advection over flat area of the Lut Desert are important factors in storm formation and emission, east of the country.
显示更多 [+] 显示较少 [-]Comparative analysis of jatropha and karanja-based biodiesel properties, performance and exhaust emission characteristics in an unmodified diesel engine
2015
Singh, Yashvir | Singla, Amneesh
An ever-increasing drift of energy consumption, unequal geographical distribution of natural wealth and the quest for low carbon fuel for a cleaner environment are sparking the production and use of biodiesels in many countries around the globe. In this work, jatropha and karanja biodiesels were produced from the respective crude vegetable oils through transesterification, and the different physical properties of the produced biodiesels have been presented and found to be acceptable according to the ASTM biodiesel specification standard. This paper presents the experimental results of the research carried out to evaluate the BTH, BSFC exhaust emission characteristics of jatropha and karanja blends in a single-cylinder diesel engine at different engine load. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, and NOx have been presented and discussed. Engine performance, in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOx) with jatropha-based biodiesel (JB50) operation, were observed compared to karanja-based biodiesel (KB50).
显示更多 [+] 显示较少 [-]Emission and Environmental Goals in Decision Making Modeling for Load Dispatch
2020
Karim, M. H. | Memarian, H. | Valitabar, Y.
The main purpose of this research is to determine the generation quantity of each generator in a power system. In this way, not only will the electricity demanded by the system be supplied, but the cost of fuel along with the level of pollution can be minimized. Obviously, calculation of the optimal layout of power plants with the aim of minimizing fuel costs and pollutants level contributes to sustainable socio-economic development. For this purpose, modeling a multi-objective decision making framework by means of the weighting method makes it possible to attain the mentioned goals. After modeling the goals and constraints of the power system, the problem associated with economic-environmental load dispatch with the Institute of Electrical and Electronics Engineers 30-Bus data is optimized by means of the Lagrange approach. Moreover, the sensitivity analysis in connection with the weight of short-term costs is conducted to determine the final point of the system usage. Results show that if the importance coefficient of the fuel cost reduction is 1 (W=1), the economic and environmental load dispatch will pose some problems for the economic load dispatch. In contrast, if the importance coefficient of the reducing fuel cost is zero (W=0), the economic and environmental load dispatch will become problematic for environmental load dispatch. Incidentally, the trade off curve of the fuel cost and the pollutant amount involves the functional information for the system operator. The current research is mainly innovative in its use of a method to reduce fuel consumption and environmental impacts on emission at optimization process. This can, in turn, lead to generation of sustainable energy.
显示更多 [+] 显示较少 [-]Effect of substrate depth and rain-event history on the pollutant abatement of green roofs
2013
Seidl, Martin | Gromaire, Marie-Christine | Saad, M. | de Gouvello, Bernard | Laboratoire Eau Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
International audience | This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes. (C) 2013 Elsevier Ltd. All rights reserved.
显示更多 [+] 显示较少 [-]The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019
2021
Yi, Liying | Wu, Jing | An, Minde | Xu, Weiguang | Fang, Xuekun | Yao, Bo | Li, Yixi | Gao, Ding | Zhao, Xingchen | Hu, Jianxin
Due to the characteristics of ozone-depleting and high global warming potential, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been restricted by the Montreal Protocol and its amendments over the world. Considering that China is one of the main contributors to the emission of halocarbons, a long-term atmospheric observation on major substances including CFC-11 (CCl₃F), CFC-12 (CCl₂F₂), HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F), HCFC-142b (CH₃CClF₂) and HFC-134a (CH₂FCF₃) was conducted in five cities (Beijing, Hangzhou, Guangzhou, Lanzhou and Chengdu) of China during 2009–2019. The atmospheric concentrations of CFC-11, CFC-12, HCFC-141b and HCFC-142b all showed declining trends on the whole while those of HCFC-22 and HFC-134a were opposite. A paired sample t-test showed that the ambient mixing ratios of HCFC-22 and HFC-134a in cities were 41.9% and 25.7% higher on average than those in suburban areas, respectively, while the other substances did not show significant regional differences. The annual emissions of halocarbons were calculated using an interspecies correlation method and the results were generally consistent with the published estimates. Discrepancies between bottom-up inventories and the estimates in this study for CFCs emissions were found. Among the most consumed ozone depleting substances (ODSs) in China, CFCs accounted for 75.1% of the ozone depletion potential (ODP)-weighted emissions while HCFCs contributed a larger proportion (58.6%) of CO₂-equivalent emissions in 2019. China's emissions of HCFC-141b and HCFC-142b contributed the most to the global emission (17.8%–48.0%). The elimination of HCFCs in China will have a crucial impact on the HCFCs phase-out in the world.
显示更多 [+] 显示较少 [-]Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China
2020
Zhang, Bing | Zhang, Qian-Qian | Zhang, Shao-Xuan | Xing, Cheng | Ying, Guang-Guo
Pesticides are widely and intensively used in the world for crops protection. High pesticide loadings can potentially pollute the water resource. However, little is known about the usage, environmental emission and fate of pesticides in river basins. Here, we firstly established a pesticide emission estimation method, and investigated the environmental fate of three commonly used pesticides (chlorpyrifos, triazophos, and isoprothiolane) in Dongjiang River basin, southern China using mathematical modelling approach in combination with field monitoring. The distributed hydrological model SWAT (Soil and Water Assessment Tool) was applied to model the emission of the target pesticides from farmland to stream water, and their fate in the basin. A satisfactory model calibration for flow and suspended sediment was obtained based on eight-year observation data of four hydrological monitoring stations in Dongjiang River basin. The differences between the simulation and observation of pesticides were almost within an order of magnitude, including more than 53% differences within 0.5 order of magnitude. In the river basin, 78860 kg of chlorpyrifos, 54990 kg of triazophos and 35320 kg of isoprothiolane were sprayed onto the crops, the estimated annual emissions of the basin come up to 1801 kg, 3779 kg, and 2330 kg under the conditions of rainfall, surface runoff and percolation. After a series of environmental processes including settlement and degradation within the channels, the predicted export masses for chlorpyrifos, triazophos and isoprothiolane were reduced to 266 kg, 1858 kg, 1350 kg, respectively. Successful prediction suggests that the reliable estimation method combing the SWAT modelling can help us understand the source, concentration levels and fate of pesticides in river basin in different scales. Combing the method of emission and fate modelling method we proposed, countries and regions lacking pesticide-application database can facilitate better management of pesticides.
显示更多 [+] 显示较少 [-]Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China
2018
Chen, Hong | Han, Jianbo | Cheng, Jiayi | Sun, Ruijun | Wang, Xiaomeng | Han, Gengchen | Yang, Wenchao | He, Xin
Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from <MDL (method detection limit) to 3.84 ng/g ww and it is the dominant congener when compared with concentrations of 8:2 Cl-PFESA. Compared with other bays and regions, levels of 6:2 Cl-PFESA are relatively high in bivalves and fishes from Liaodong Bay. These levels were also found to tend to increase as compared with those in 2010–2014. Logarithm bioaccumulation factors (BAFs) for 6:2 Cl-PFESA ranged from 2.23 to 4.21, implying the bioaccumulation of this compound. The trophic magnification factor (BMF) for 6:2 Cl-PFESA was determined to be 3.37 in the marine food web, indicating biomagnification potential along the marine food chain.
显示更多 [+] 显示较少 [-]Characterization of airborne particles emitted by an electrically heated tobacco smoking system
2018
Pacitto, A. | Stabile, L. | Scungio, M. | Rizza, V. | Buonanno, G.
Smoking activities were recognized as a main risk factor for population. Indeed, mainstream smoke aerosol is directly inhaled by smokers then delivering harmful compounds in the deepest regions of the lung. In order to reduce the potential risk of smoking, different nicotine delivery products have been recently developed. The latest device released is an electrically heated tobacco system (iQOS®, Philip Morris) which is able to warm the tobacco with no combustion. In the present paper a dimensional and volatility characterization of iQOS-generated particles was performed through particle number concentration and distribution measurements in the mainstream aerosol. The experimental analysis was carried out through a condensation particle counter, a fast mobility particle sizer and a thermo-dilution sampling system allowing aerosol samplings at different temperatures. Estimates of the particle surface area dose received by smokers were also carried out on the basis of measured data and typical smoking patterns.The particle number concentrations in the mainstream aerosols resulted lower than 1 × 108 part. cm−3 with particle number distribution modes of about 100 nm. Nonetheless, the volatility analysis showed the high amount of volatile fraction of iQOS-generated particles, indeed, samplings performed at 300 °C confirmed a significant particle shrinking phenomena (modes of about 20 nm). Anyway, the particle number concentration does not statistically decrease at higher sampling temperatures, then showing that a non-volatile fraction is always presents in the emitted particles. The dose received by smokers in terms of non-volatile amount of particle surface area was equal to 1–2 mm2 per puff, i.e. up to 4-fold larger than that received by electronic cigarette vapers.
显示更多 [+] 显示较少 [-]Emissions of fine particulate nitrated phenols from the burning of five common types of biomass
2017
Wang, Xinfeng | Gu, Rongrong | Wang, Liwei | Xu, Wenxue | Zhang, Yating | Chen, Bing | Li, Weijun | Xue, Likun | Chen, Jianmin | Wang, Wenxing
Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m−3. The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88–95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM2.5 emission factors from literatures and were approximately 0.75–11.1 mg kg−1. According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and provides basic data for modeling studies.
显示更多 [+] 显示较少 [-]