细化搜索
结果 1-10 的 102
[Character of pollution and longtime variations of Tamis river water quality]
1997
Cukic, Z. (Univerzitet u Novom Sadu, Novi Sad (Yugoslavia). Prirodno-matematicki fakultet, Institut za hemiju) | Kilibarda, P. | Kojcic, K. | Jovanovic, D.
In this paper, the results of statistical analysis of then years water quality data of Tamis river at the Romanian-Yugoslav border ("Jasa Tomic" Control Station) are presented. Following changes of analyzed water quality parameters at the Romanian-Yugoslav border a strong trend of deterioration has been observed during analyzed period. Because of periodical accidentally high organic content (COD, BOD) and concentration of ammonia and organic nitrogen in river water, it is concluded that upstream discharging of farm waste waters was the main reason of deterioration of water quality along the Yugoslav part of Tamis river.
显示更多 [+] 显示较少 [-]Effects of preparatory stands on forest site restoration
2002
Remes, J. | Podrazsky, V. (Czech University of Agriculture, Prague (Czech Republic). Faculty of Forestry)
The main aims of the preparatory stands in air pollution areas are growth development, successfull dynamics of the plants and fast creation of the stand microclimate with favourable effect on soil conditions. This process is documented by height and diameter increment. The results confirm different growth dynamics of the particular species. Larch is the species with the best growth dynamics of selected species on experimental plots. On the other hand, beech is the worst species for reforestation in this condition. One of the causes could be damage by frost
显示更多 [+] 显示较少 [-]The potential ecological risk of multiwall carbon nanotubes was modified by the radicals resulted from peroxidase-mediated tetrabromobisphenol A reactions 全文
2017
Lu, Kun | Huang, Qingguo | Xia, Tian | Chang, Xiaofeng | Wang, Peng | Gao, Shixiang | Mao, Liang
Extensive studies have been conducted on the environmental degradation of multiwall carbon nanotubes (MWCNTs), but primarily focused on the extent and rate of MWCNTs mineralization. Few studies have explored possible structural changes that may occur to MWCNTs during natural or engineered processes. We systematically examined MWCNTs in oxidative coupling reactions in the presence of a common contaminant tetrabromobisphenol A (TBBPA). MWCNTs was modified by the radicals of TBBPA resulting from peroxidase-mediated coupling reaction. Interactions between TBBPA radicals and MWCNTs were definitely confirmed by analyzing the characteristic mass spectrometry response of bromine in TBBPA and the structures of MWCNTs. After reaction with TBBPA radicals for 60 min, the content of bromine contained in MWCNTs was 6.84(±0.12)%, a quantity equivalent to a 501.65(±2.19) mg loading of TBBPA per gram MWCNTs. Modified MWCNTs had better stability and smaller sizes than that of MWCNTs and TBBPA-adsorbed MWCNTs. Assessment using zebrafish embryos revealed that the modified MWCNTs passed through the chorion and entered the embryo inducing acute toxicity, while the MWCNTs/TBBPA-adsorbed MWCNTs was trapped by chorion. These findings indicated that MWCNTs was modified in peroxidase-mediated coupling reactions, and suggested that such modifications may have an influence on the ecological risks of MWCNTs.
显示更多 [+] 显示较少 [-]Simulated degradation of biochar and its potential environmental implications 全文
2013
Liu, Zhaoyun | Demisie, Walelign | Zhang, Mingkui
A simulated oxidation technique was used to examine the impacts of degradation on the surface properties of biochar and the potential implications of the changes in biochar properties were discussed. To simulate the short- and long-term environmental degradation, mild and harsh degradation were employed. Results showed that after mild degradation, the biochar samples showed significant reductions in surface area and pore volumes. After harsh degradation, the biochar samples revealed dramatic variations in their surface chemistry, surface area, pore volumes, morphology and adsorption properties. The results clearly indicate that changes of biochar surface properties were affected by biochar types and oxidative conditions. It is suggested that biochar surface properties are likely to be gradually altered during environmental exposure. This implies that these changes have potential effects for altering the physicochemical properties of biochar amended soils.
显示更多 [+] 显示较少 [-]Development of a test-tube stress-ethylene bioassay for detecting phytotoxic gases | Development of a test-tube stress-ethylene bioassay for detecting phytotoxic gases 全文
1982
Craker, L. E. | Fillatti, J. J.
A rapid, quantitative bioassay for detecting phytotoxic air pollutants has been developed. The technique uses wheat Triticum aestivum L. or tomato Lycopersicon esculentum L., seedlings growing on an agar medium in test-tubes. The seedlings are exposed to a pollutant in the test-tube and stress-ethylene induced by the pollutant is quantitatively measured by gas chromatography. Increases in ethylene production from seedlings exposed to a phytotoxic air pollutant as compared with controls not exposed to pollutants were related to the pollutant concentration.
显示更多 [+] 显示较少 [-]Forests health status as the result of environmental impacts and forestry interventions
2002
Hocevar, M. | Mavsar, R. | Kovac, M. (Slovenian Forestry Institute, Ljubljana (Slovenia))
The analysis of the latest results along with the change analysis reveals that the conditions of Slovenia's forest are considerably stable and that the process of decline has not progressed with the intensity, that had been predicted in the early eighties. Quite favourable conditions are due to prompt actions (selection and sanitary cutting) in the field
显示更多 [+] 显示较少 [-]Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil 全文
2019
Zhang, Cheng | Zhou, Tongtong | Zhu, Lusheng | Juhasz, Albert | Du, Zhongkun | Li, Bing | Wang, Jun | Wang, Jinhua | Sun, Yan'an
Agricultural chemicals affect the daily life of food production. However, the abuse of pesticides led to the damage to the environment. Pyraclostrobin (PYR) is commonly used strobilurin fungicide which inhibits fungal respiration through mitochondrial cytochrome-b and c1 inhibition. There is increasing concerns that PYR may adversely impact the environment. Although impacts on ecological receptors have been detailed, little information is available regarding the toxicological impact of PYR on soil microbial community dynamics and functioning. Understanding the potential impact on soil microbial populations is important. The activity of enzymes (urease, dehydrogenase, and β-glucosidase) and diversity of microbial community structure using high-throughput 16S rRNA sequencing were evaluated at different soil-PYR concentrations (0.1, 1.0, and 2.5 mg/kg) over a 48 day exposure period. Urease activity remained stable in general. Pyraclostrobin inhibited dehydrogenase activity during the exposure period. The β-glucosidase activity was inhibited on day 28 and induced on day 48 at 1.0 and 2.5 mg/kg. The genera Gp6, Exiguobacterium, Gp4, and Gemmatimonas were both the dominant genera and significantly changed genera. Pyraclostrobin had different level of influence on soil microbes containg their enzyme activity and community structure. The purpose of the current study was to examine the impact of PYR addition on soil enzymes as an indicator of soil health and to have complementary data on the impact of microbial populations. Furthermore, the study may also be the guide for further rational pesticide selection.
显示更多 [+] 显示较少 [-]Preliminary test on the distribution, hydrolyzation and excretion of aluminum dialkyl phosphinate flame retardants in rats 全文
2018
Niu, Yumin | Liang, Yong | Li, Lisha | Liu, Yuchen | Liu, Jiyan | Liu, Jingfu
Aluminum dialkyl phosphinates (ADPs) are a promising class of chemicals offering superior flame retardance. However, knowledge on their behavior in vivo is scarce. Hydrolysis has been suggested as one of the major routes of environmental degradation of ADPs. Herein, aluminum methylcyclohexyl phosphinic (AMHP), a kind of ADPs with industrial production in China, and its hydrolysate methyl cyclohexyl phosphinic acid (MHPA) were continuously exposed to Sprague Dawley (SD) rats for 28 days in this study. The same ratio of MHPA in organs to serum and the same daily excretion of MHPA were observed for AMHP exposure group and MHPA exposure group, suggesting the hydrolysis of AMHP in vivo. The hydrolysis of AMHP to MHPA was further confirmed by in vitro simulated human gastric intestinal juice. Therefore, both AMHP and MHPA distributed in liver, kidney and even brain in the form of MHPA. More than 80% of AMHP and MHPA could be excreted by feces and urine. Feces are the main route of excretion of AMHP and MHPA. The denseness of the inflammatory cell in the hepatic portal area and biochemical indexes showed the obvious dose-effect relationship. However, the toxicity of AMHP and MHPA was quite low even with exposure level up to 100 mg/kg dw/day. The low cumulative ability and mild toxicity indicated AMHP as a promising substitute for brominated flame retardant.
显示更多 [+] 显示较少 [-]To what extent are microplastics from the open ocean weathered? 全文
2017
ter Halle, Alexandra | Ladirat, Lucie | Martignac, Marion | Mingotaud, Anne-Françoise | Boyron, Olivier | Perez, Emile
It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5–20 mm) and microplastics (0.3–5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer.
显示更多 [+] 显示较少 [-]Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes 全文
2014
Berry, Timothy D. | Filley, Timothy R. | Blanchette, R. A. (Robert A.)
Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment.
显示更多 [+] 显示较少 [-]