细化搜索
结果 1-10 的 97
Anti-oomycete activities from essential oils and their major compounds on Phytophthora infestans
2023
Deweer, Caroline | Sahmer, Karin | Muchembled, Jérôme | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
International audience | Abstract Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight ( Phytophthora infestans ). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora /citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata /D-Carvone, L-Carvone; Origanum compactum /carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris /thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC 50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC 50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC 50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.
显示更多 [+] 显示较少 [-]Anti-oomycete activities from essential oils and their major compounds on Phytophthora infestans
2023
Deweer, Caroline | Sahmer, Karin | Muchembled, Jérôme | Transfrontalière BioEcoAgro - UMR 1158 (BioEcoAgro) ; Université d'Artois (UA)-Université de Liège-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
International audience | Abstract Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight ( Phytophthora infestans ). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora /citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata /D-Carvone, L-Carvone; Origanum compactum /carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris /thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC 50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC 50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC 50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.
显示更多 [+] 显示较少 [-]Jumping on the bed and associated increases of PM10, PM2.5, PM1, airborne endotoxin, bacteria, and fungi concentrations
2019
Yen, Yu-Chuan | Yang, Chun-Yuh | Mena, Kristina Dawn | Cheng, Yu-Ting | Yuan, Chung-Shin | Chen, Pei-Shih
Jumping on the bed is a favorite behavior of children; however, no study has investigated the increased air pollutants resulting from jumping on the bed. Therefore, we aimed to investigate the elevated concentrations of particulate matter (PM) and bioaerosols from jumping on the bed and making the bed. Simulation of jumping on the bed and making the bed was performed at sixty schoolchildren's houses in Taiwan. PM10, PM2.5, PM1 (PM with aerodynamic diameter less than 10, 2.5, and 1 μm, respectively) and airborne bacteria, fungi and endotoxin concentrations were simultaneously measured over simulation and background periods. Our results show the increase of PM10, PM2.5, PM1, airborne bacteria and fungi through the behavior of jumping on the bed (by 414 μg m-3, 353 μg m-3, 349 μg m-3, 6569 CFU m-3 and 978 CFU m-3, respectively). When making the bed, the PM10, PM2.5, PM1, airborne bacteria and fungi also significantly increased by 4.69 μg m-3, 4.09 μg m-3, 4.15 μg m-3, 8569 CFU m-3, and 779 CFU m-3, respectively. Airborne endotoxin concentrations significantly increased by 21.76 EU m-3 following jumping on the bed and making the bed. Moreover, when jumping on the bed, higher PM2.5 and PM1 concentrations in houses with furry pets rather than no furry pets, and less airborne fungi in apartments than in townhouses were found. For making the bed, lower airborne fungi was found in houses using essential oils rather than no essential oils using. The airborne endotoxin concentrations were positively associated with furry pets and smokers in the homes and negatively correlated to the home with window opening with a statistical significance during the periods of jumping on the bed and making the bed. In conclusion, significant increases of PM and bioaerosols during jumping on the bed and making the bed may need to be concerned.
显示更多 [+] 显示较少 [-]Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles
2019
Toledo, Pedro F.S. | Ferreira, Taciano P. | Bastos, Isabela M.A.S. | Resende, Sarah M. | Viteri Jumbo, Luis O. | Didonet, Julcemar | Andrade, Bruno S. | Melo, Tarcisio S. | Smagghe, Guy | Oliveira, Eugênio E. | Aguiar, Raimundo W.S.
Plant essential oils are regarded as interesting alternative tools to be integrated into the management of pest insects. However, as they generally consist of mixtures of numerous molecules, the physiological basis for their action is unresolved. Here, we evaluated the effects of essential oil of the Neotropical plant Siparuna guianensis Aubl., commonly known as Negramina, against an important pest insect: the green peach aphid Myzus persicae (Sulzer), and also in two non-target natural enemies: the ladybeetle predators Coleomegilla maculata (DeGeer) and Eriopis connexa (Germar). In addition, we conducted a computational docking analysis for predicting the physical interactions between the two Negramina essential oil major constituents: β-myrcene and 2-undocanone, and the transient receptor potential (TRP) channels as potential binding receptors in the aphid and ladybeetles. As the most important results, Negramina essential oil caused mortality in M. persicae aphids with an LC95 = 1.08 mg/cm2, and also significantly repelled the aphids at concentrations as low as 0.14 mg/cm2. Our computational docking analysis reinforced such selectivity actions as the Negramina essential oil major compounds (i.e., β-myrcene and 2-undocanone) bound to the TRP channels of M. persicae but not to ladybeetle-related TRP channels. Interestingly, the exposure to the Negramina essential oil did not affect the predatory abilities of C. maculata but increased the abilities of E. connexa to prey upon M. persicae. Collectively, our findings provided a physiological basis for the insecticidal and selectivity potential of Negramina essential oil, reinforcing its potential as a tool to be used in integrated pest control programs.
显示更多 [+] 显示较少 [-]The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air
2021
Mishra, Disha | Yadav, Ranu | Pratap Singh, Raghvendra | Taneja, Ajay | Tiwari, Rahul | Khare, Puja
The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m³ to 80 m³) and in different size fractions of aerosol (<0.25 μm–2.5 μm). The composite system had high encapsulation efficiency (88–91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm⁻³ to 2.33 log CFUm⁻³) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 μm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.
显示更多 [+] 显示较少 [-]The ameliorative efficacy of Thymus vulgaris essential oil against Escherichia coli O157:H7-induced hematological alterations, hepatorenal dysfunction and immune-inflammatory disturbances in experimentally infected rats
2022
Ismail, Hager Tarek H.
The purpose of the present study was to evaluate the possible ameliorative role of Thymus vulgaris (T. vulgaris) essential oil against Escherichia coli O157:H7 (E. coli O157:H7) deleterious effects in both blood and different tissues of rats by assessing the hematological, biochemical and immune-inflammatory parameters besides the histopathological alterations in the different organs. Forty male rats were randomly divided into four equal groups as follows: group I served as control, group II orally inoculated with E. coli O157:H7 at a dose of 1.0 × 10⁹ cfu/ml, group III orally received 250 mg/kg BW T. vulgaris oil daily for 7 days and group IV orally inoculated with E. coli O157:H7 as the same dose of group II and orally received T. vulgaris oil as the same dose and duration of group III. Bacterial challenge in groups II and IV was once at the beginning of experiment and administration of oil began after 72 h from bacterial inoculation. At the end of the study, blood was sampled and complete blood picture, liver and kidney function alongside immunoglobulins and cytokines concentrations were estimated and tissues of large intestine (colon), liver and kidneys were collected for histopathological examinations. The results revealed that there was an increase of red blood cells count, hematocrit value and hemoglobin concentration besides white blood cells and thrombocytes counts and substantial increment of serum markers of hepatorenal damage such as the activities of transaminases and concentrations of bilirubin (total, direct and indirect), total proteins, albumin, creatinine and urea in E. coli O157:H7-challenged group. Also, there was a considerable increase in serum immunoglobulins M and G, interleukin 6 and 8 and tumor necrosis factor alpha as well as decreased serum alkaline phosphatase activity. Moreover, T. vulgaris oil could partially improve the hematological, biochemical and histopathological alterations induced by E. coli O157:H7 without any significant alterations in all measured parameters when used alone. The study concluded that the T. vulgaris oil relatively diminished the alterations in hematological parameters, hepatic and renal function markers and immune-inflammatory variables alongside the histopathological changes in different organs induced by E. coli O157:H7. The ameliorative effects of T. vulgaris oil are mediated through its anti-inflammatory, antioxidant and immunomodulatory activities.
显示更多 [+] 显示较少 [-]Foliar-applied magnesium nanoparticles modulate drought stress through changes in physio-biochemical attributes and essential oil profile of yarrow (Achillea millefolium L.)
2022
Ojagh, Seyyed Ebrahim | Moaveni, Payam
Nanoparticles (NPs) are an emerging tool for mitigating environmental stresses. Although beneficial roles of NPs have been reported in some plants, there is little data on magnesium (Mg)-NPs in alleviating drought stress. Therefore, the field experiment was conducted to study changes in biochemical attributes and essential oil (EO) compositions of yarrow (Achillea millefolium L.) plants under drought stress and Mg-NPs in 2016 and 2017. Irrigation regimes were used in two levels as well-watered (irrigation intervals of 7 days) and drought stress (irrigation intervals of 14 days) conditions, and Mg-NPs were sprayed on leaves in four levels (0, 0.1, 0.3, and 0.5 g L⁻¹). The results showed drought stress led to increased electrolyte leakage (EL), proline, carotenoid, anthocyanin, and total flavonoid content (TFC). However, flowers yield and EO yield were lower in plants exposed to drought stress as compared to well-watered conditions. The 0.3 and 0.5 g L⁻¹ Mg-NPs were more effective in alleviating drought stress by enhancing these traits. Heat map results showed that EL and TSS represented the high variability upon different treatments. The GC and GC/MS results represented that α-pinene (8.60–12.20%), 1,8-cineol (9.03–14.02%), camphor (6.84–9.80%), α-bisabolol (8.54–18.81%), chamazulene (14.23–22.50%), and caryophyllene oxide (7.20–9.80%) were the min EO constitutes of yarrow plants. Totally, drought decreased monopertens but increased sesquiterpenes of EO. To sum up, foliar applied Mg-NPs in a range of 0.3–0.5 g L⁻¹ can be recommended as effective tool to improve plant yield through changes in biochemical attributes of yarrow plants.
显示更多 [+] 显示较少 [-]Dose differentiation in elevated UV-B manifests variable response of carbon–nitrogen content with changes in secondary metabolites of Curcuma caesia Roxb
2022
Jaiswal, Deepanshi | Agrawal, Madhoolika | Agrawal, Shashi Bhushan
Despite acting as environmental stress, UV-B also plays a regulatory role in the plant’s growth and secondary metabolism. UV-B-induced changes show variations between and among the species. The present study mainly focuses on variations in carbon and nitrogen contents and their relation with the phytochemical constituents of Curcuma caesia exposed to two different doses of UV-B (ambient ± elevated UV-B for 1 h (2.4 kJ m⁻² day⁻¹) and 2 h (4.8 kJ m⁻² day⁻¹)) under natural field conditions. Results showed that increasing the dose of eUV-B leads to high tuber biomass and reduced rhizome biomass (the medicinally important part). Increased expression of compounds at the initial rhizome formation stage might be due to the increased carbon content, whereas no such trend was found at the final growth or rhizome maturation stage. After final harvesting, carbon content was reduced, with an increase of nitrogen content which might be responsible for enhanced production of major components of essential oil (D-camphor and 1,8-cineole) in 2 h of UV-B exposure followed by 1 h. The phytochemical analysis at the final stage showed induction of compounds (15 and 10 in 1 h and 2 h, respectively) after UV-B exposure which was not detected in controls. The present study suggests that the change in carbon–nitrogen played an important role in the fraction of compounds at different stages, and a lower dose of UV-B (1 h) favoured the increased production of essential oil; however, 2 h dose is important for the enhanced production of major active compounds of essential oil.
显示更多 [+] 显示较少 [-]Chemically characterized nanoencapsulated Homalomena aromatica Schott. essential oil as green preservative against fungal and aflatoxin B1 contamination of stored spices based on in vitro and in situ efficacy and favorable safety profile on mice
2022
Tiwari, Shikha | Upadhyay, Neha | Singh, Bijendra Kumar | Singh, Vipin Kumar | Dubey, N. K.
Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB₁, and free radical-mediated deterioration of stored spices. GC–MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR, and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB₁ biosynthesis at 1.25 μL/mL and 1.0 μL/mL, respectively in comparison to unencapsulated HAEO (1.75 μL/mL and 1.25 μL/mL, respectively). CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca⁺², Mg⁺², and K⁺) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells illustrated the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne exhibited superior antioxidant efficacy (IC₅₀ ₍DPPH₎ = 4.5 μL/mL) over unencapsulated HAEO (IC₅₀ ₍DPPH₎ = 15.9 μL/mL) and phenolic content. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting fungal infestation, AFB₁ contamination, lipid peroxidation, and mineral loss with acceptable sensorial profile. Moreover, broad safety paradigm (LD₅₀ value = 7150.11 mg/kg) of CS-HAEO-Ne also suggests its application as novel green preservative to enhance shelf life of stored spices.
显示更多 [+] 显示较少 [-]Development of chitosan-coated nanoemulsions of two sulfides present in onion (Allium cepa) essential oil and their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus
2021
Yang, Eunhye | Yi, Chae-u | Chang, Pahn-Shick | Park, Il-Kwon
Pine wood nematode, Bursaphelenchus xylophilus, is a plant parasitic nematode which causes severe damage to several Pinus species. Two natural compounds, dipropyl trisulfide (DPTS) and methyl propyl trisulfide (MPTS), showed strong nematicidal activity against the pine wood nematode, presenting 4.24 and 17.81 μg/mL LC₅₀ values, respectively. However, hydrophobicity and low stability have limited their practical use in the field as nematicides. To overcome these problems, chitosan-coated nanoemulsions of DPTS and MPTS were developed. The optimum chitosan concentration for the delivery system of the two sulfides was 0.5%. Optimized chitosan-coated nanoemulsions of sulfides have a uniform size distribution (mean diameter = 203.7 and 207.7 nm, mean polydispersity index = 0.176 and 0.178) with sufficient colloidal stability (mean zeta potential = +40 and +45 mV). The LC₅₀ values of DPTS and MPTS nanoemulsions coated with 0.5% chitosan against the pine wood nematode were 5.01 and 16.60 μg/mL, respectively. In addition, chitosan coating improved the long-term storage stability and persistence of nematicidal activity of the nanoemulsions. This study indicates that the chitosan-coated nanoemulsion is a suitable formulation for sulfides as novel nematicides against the pine wood nematode for field application.
显示更多 [+] 显示较少 [-]