细化搜索
结果 1-10 的 213
Exposure of juvenile turbot (Scophthalmus maximus) to AgNP-EE2 mixtures: Implications on contaminant bioavailability and plasma steroid hormone levels 全文
2017
Farkas, Julia | Salaberria, Iurgi | Styrishave, Bjarne | Stanková, Radka | Ciesielski, Tomasz Maciej | Olsen, Anders Johny | Posch, Wilfried | Flaten, Trond Peder | Krøkje, Åse | Salvenmoser, Willi | Jenssen, Bjørn Munro
Combined exposure to engineered nanoparticles (ENPs) and anthropogenic contaminants can lead to changes in bioavailability, uptake and thus effects of both groups of contaminants. In this study we investigated effects of single and combined exposures of silver (Ag) nanoparticles (AgNPs) and the synthetic hormone 17a-ethinylestradiol (EE2) on tissue uptake of both contaminants in juvenile turbot (Scophthalmus maximus). Silver uptake and tissue distribution (gills, liver, kidney, stomach, muscle and bile) were analyzed following a 14-day, 2-h daily pulsed exposure to AgNPs (2 mg L 1 and 200 mg L 1), Agþ (50 mg L 1), EE2 (50 ng L 1) and AgNP þ EE2 (2 or 200 mg L 1þ50 ng L 1). Effects of the exposures on plasma vitellogenin (Vtg) levels, EE2 and steroid hormone concentrations were investigated. The AgNP and AgNP þ EE2 exposures resulted in similar Ag concentrations in the tissues, indicating that combined exposure did not influence Ag uptake in tissues. The highest Ag concentrations were found in gills. For the Agþ exposed fish, the highest Ag concentrations were measured in the liver. Our results show dissolution processes of AgNPs in seawater, indicating that the tissue concentrations of Ag may partly originate from ionic release. Plasma EE2 concentrations and Vtg induction were similar in fish exposed to the single contaminants and the mixed contaminants, indicating that the presence of AgNPs did not significantly alter EE2 uptake. Similarly, concentrations of most steroid hormones were not significantly altered due to exposures to the combined contaminants versus the single compound exposures. However, high concentrations of AgNPs in combination with EE2 caused a drop of estrone (E1) (female fish) and androstenedione (AN) (male and female fish) levels in plasma below quantification limits. Our results indicate that the interactive effects between AgNPs and EE2 are limited, with only high concentrations of AgNPs triggering synergistic effects on plasma steroid hormone concentrations in juvenile turbots. | acceptedVersion
显示更多 [+] 显示较少 [-]Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters 全文
2021
López-Velázquez, Khirbet | Guzmán-Mar, Jorge L. | Saldarriaga-Noreña, Hugo A. | Murillo-Tovar, Mario A. | Hinojosa-Reyes, Laura | Villanueva-Rodríguez, Minerva
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs’ determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4–450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080–0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
显示更多 [+] 显示较少 [-]Evaluation of the effects of low concentrations of bisphenol AF on gonadal development using the Xenopus laevis model: A finding of testicular differentiation inhibition coupled with feminization 全文
2020
Cai, Man | Li, Yuan-Yuan | Zhu, Min | Li, Jin-Bo | Qin, Zhan-Fen
Developmental exposures to estrogenic chemicals possibly cause structural and functional abnormalities of reproductive organs in vertebrates. Bisphenol AF (BPAF), a bisphenol A (BPA) analogue, has been shown to have higher estrogenic activity than BPA, but little is known about the effects of BPAF on gonadal development, particularly gonadal differentiation. We aimed to determine whether low concentrations of BPAF could disrupt gonadal differentiation and subsequent development using Xenopus laevis, a model species for studying feminizing effects of estrogenic chemicals. X. laevis tadpoles were exposed to BPAF (1, 10, 100 nM) or 17β-estradiol (E2, positive control) from stages 45/46 to 53 and 66 in a semi-static exposure system, with a prolonged treatment with the highest concentration to the eighth week post-metamorphosis (WPM8). Gonadal morphology and histology as well as sexually dimorphic gene expression were examined to evaluate the effects of BPAF. All concentrations of BPAF caused changes in testicular morphology at different developmental stages compared with controls. Specifically, at stage 53, BPAF like E2 resulted in decreases in both the size and the number of gonadal metameres (gonomeres) in testes, looking like ovaries. Some of BPAF-treated testes remained segmented and even became discontinuous and fragmented at subsequent stages. Histological abnormalities were also observed in BPAF-treated testes, such as ovarian cavity at stages 53 and 66 and poorly developed seminiferous tubules on WPM8. At the molecular level, BPAF inhibited expression of male highly expressed genes in testes at stage 53. Correspondingly, BPAF, like E2, inhibited cell proliferation in testes at stage 50. All results show that low concentrations of BPAF inhibited testicular differentiation and subsequent development in X. laevis, along with feminizing effects to some degree. Our finding implies a risk of BPAF to the male reproductive system of vertebrates including humans.
显示更多 [+] 显示较少 [-]Reproductive dysfunction linked to alteration of endocrine activities in zebrafish exposed to mono-(2-ethylhexyl) phthalate (MEHP) 全文
2020
Park, Chang-Beom | Kim, Ko-ŭn | Kim, Yŏng-jun | On, Jiwon | Pak, Ch'ang-gyun | Kwon, Young-Sang | Pyo, Heesoo | Yeom, Dong-Huk | Cho, Sung Hee
This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 μg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 μg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17β-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.
显示更多 [+] 显示较少 [-]Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish 全文
2020
Naderi, Mohammad | Salahinejad, Arash | Attaran, Anoosha | Chivers, Douglas P. | Niyogi, Som
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
显示更多 [+] 显示较少 [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species 全文
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
显示更多 [+] 显示较少 [-]Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio) 全文
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
显示更多 [+] 显示较少 [-]Enrichment of imidacloprid and its metabolites in lizards and its toxic effects on gonads 全文
2020
Yang, Lu | Shen, Qiuxuan | Zeng, Tao | Li, Jianzhong | Li, Wei | Wang, Yinghuan
Soil contaminants can cause direct harm to lizards due to their regular swallowing of soil particles. As the world’s fastest growing insecticide with long half-life in soil, the endocrine disrupting effect of neonicotinoids on lizards deserves more attention. In this report, we assessed the endocrine disrupting effect of imidacloprid on Eremias argus during 28 days of continuous exposure. Among the imidacloprid and its metabolites, only the metabolite 6-chloropyridic acid had a significant accumulation in the gonads and was positively correlated with its blood concentration. Imidacloprid might cause endocrine disrupting effects on lizards in two ways. First, the desnitro metabolites of imidacloprid could accumulate in the brain, inhibited the secretion of gonadotropin-releasing hormone, and ultimately affected the feedback regulation of hypothalamic-pituitary-gonadal related hormones. Secondly, imidacloprid severely inhibited the gene expression of the corresponding enzymes in the gonadal anti-oxidative stress system, causing histological damage to the gonads and ultimately affecting gonadal function. Specifically, exposure to imidacloprid resulted in abnormal arrangement of spermatogenic epithelial epithelium, hyperplasia of epididymal wall, and oligospermia of male lizard. Meanwhile, gene expressions of cyp17, cyp19, and hsd17β were severely inhibited in the imidacloprid exposure group, consistent with decreased levels of testosterone and estradiol in plasma. Imidacloprid exposure could cause insufficient androgen secretion and less spermatogenesis in male lizards. The risk of imidacloprid exposure to female lizards was not as severe as that of male lizards, but it still inhibited the expression of cyp19 in the ovaries and led to a decrease in the synthesis of estradiol. This study firstly reported the endocrine disruption of imidacloprid to lizards, providing new data for limiting the use of neonicotinoids.
显示更多 [+] 显示较少 [-]Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective 全文
2020
Du, Banghao | Fan, Gongduan | Yu, Weiwei | Yang, Shuo | Zhou, Jinjin | Luo, Jing
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015–March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%–83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPᵢ) by chemical analytical data, as well as correlation between EEQbᵢₒ and EEQcₐₗ was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
显示更多 [+] 显示较少 [-]Effects of endocrine disrupting chemicals in pigs 全文
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
显示更多 [+] 显示较少 [-]