细化搜索
结果 1-10 的 38
Exudates from Miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals
2022
Zadel, Urška | Cruzeiro, Catarina | Raj Durai, Abilash Chakravarthy | Nesme, Joseph | May, Robert | Balázs, Helga | Michalke, Bernhard | Płaza, Grażyna | Schröder, Peter | Schloter, Michael | Radl, Viviane
The composition of root exudates is modulated by several environmental factors, and it remains unclear how that affects beneficial rhizosphere or inoculated microorganisms under heavy metal (HM) contamination. Therefore, we evaluated the transcriptional response of Pseudomonas putida E36 (a Miscanthus x giganteus isolate with plant growth promotion-related properties) to Cd, Pb and Zn in an in vitro study implementing root exudates from M. x giganteus. To collect root exudates and analyse their composition plants were grown in a pot experiment under HM and control conditions. Our results indicated higher exudation rate for plants challenged with HM. Further, out of 29 organic acids identified and quantified in the root exudates, 8 of them were significantly influenced by HM (e.g., salicylic and terephthalic acid). The transcriptional response of P. putida E36 was significantly affected by the HM addition to the growth medium, increasing the expression of several efflux pumps and stress response-related functional units. The additional supplementation of the growth medium with root exudates from HM-challenged plants resulted in a downregulation of 29% of the functional units upregulated in P. putida E36 as a result of HM addition to the growth medium. Surprisingly, root exudates + HM downregulated the expression of P. putida E36 functional units related to plant colonization (e.g., chemotaxis, motility, biofilm formation) but upregulated its antibiotic and biocide resistance compared to the control treatment without HM. Our findings suggest that HM-induced changes in root exudation pattern may attract beneficial bacteria that are in turn awarded with organic nutrients, helping them cope with HM stress. However, it might affect the ability of these bacteria to colonize plants growing in HM polluted areas. Those findings may offer an insight for future in vivo studies contributing to improvements in phytoremediation measures.
显示更多 [+] 显示较少 [-]Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves
2020
Yang, Tao-Yu | Qi, Yi-Ping | Huang, Hui-Yu | Wu, Fenglin | Huang, Wei-Tao | Deng, Chong-Ling | Yang, Lin-Tong | Chen, Li-Song
Low pH and aluminum (Al)-toxicity often coexist in acidic soils. Citrus sinensis seedlings were treated with nutrient solution at a pH of 2.5, 3.0, 3.5 or 4.0 and an Al concentration of 0 or 1 mM for 18 weeks. Thereafter, malate, citrate, isocitrate, acid-metabolizing enzymes, and nonstructural carbohydrates in roots and leaves, and release of malate and citrate from roots were measured. Al concentration in roots and leaves increased under Al-toxicity, but it declined with elevating nutrient solution pH. Al-toxicity increased the levels of glucose, fructose, sucrose and total soluble sugars in leaves and roots at each given pH except for a similar sucrose level at pH 2.5–3.0, but it reduced or did not alter the levels of starch and total nonstructural carbohydrates (TNC) in leaves and roots with the exception that Al improved TNC level in roots at pH 4.0. Levels of nonstructural carbohydrates in roots and leaves rose with reducing pH with a few exceptions with or without Al-toxicity. A potential model for the possible role of root organic acid (OA) metabolism (anions) in C. sinensis Al-tolerance was proposed. With Al-toxicity, the elevated pH upregulated the OA metabolism, and increased the flow of carbon to OA metabolism, and the accumulation of malate and citrate in roots and subsequent release of them, thus reducing root and leaf Al and hence eliminating Al-toxicity. Without Al-toxicity, low pH stimulated the exudation of malate and citrate, an adaptive response of Citrus to low pH. The interactive effects of pH and pH on OA metabolism were different between roots and leaves.
显示更多 [+] 显示较少 [-]Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii
2013
Li, Tingqiang | Tao, Qi | Liang, Chengfeng | Shohag, M.J.I. | Yang, Xiaoe | Sparks, Donald L.
The complexation of Zn, Cd and Pb with dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii was measured using resin equilibration method. After the growth of HE S. alfredii, the rhizosphere soil pH was reduced by 0.27–0.33 units, due to enhanced DOM derived from root exudation. For both ecotypes of S. alfredii, the fraction of free metal as a percentage of soluble metal varied from 22.1 to 42.5% for Zn2+, from 8.1 to 15.5% for Cd2+, and from 4.5 to 10.4% for Pb2+. Resin equilibration experiment results indicated that HE–DOM had greater ability to form complexes with Zn, Cd and Pb than NHE–DOM, Visual MINTEQ model gave excellent predictions of the complexation of Zn and Cd by DOM (R2 > 0.97). DOM in the rhizosphere of HE S. alfredii could significantly increase metal mobility through the formation of soluble DOM-metal complexes.
显示更多 [+] 显示较少 [-]Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.)
2011
Desalme, Dorine | Binet, Philippe | Epron, Daniel | Bernard, Nadine | Gilbert, Daniel | Toussaint, Marie-Laure | Plain, Caroline | Chiapusio, Geneviève
The influence of atmospheric phenanthrene (PHE) exposure (160μgm⁻³) during one month on carbon allocation in clover was investigated by integrative (plant growth analysis) and instantaneous ¹³CO₂ pulse-labelling approaches. PHE exposure diminished plant growth parameters (relative growth rate and net assimilation rate) and disturbed photosynthesis (carbon assimilation rate and chlorophyll content), leading to a 25% decrease in clover biomass. The root-shoot ratio was significantly enhanced (from 0.32 to 0.44). Photosynthates were identically allocated to leaves while less allocated to stems and roots. PHE exposure had a significant overall effect on the ¹³C partitioning among clover organs as more carbon was retained in leaves at the expense of roots and stems. The findings indicate that PHE decreases root exudation or transfer to symbionts and in leaves, retains carbon in a non-structural form diverting photosynthates away from growth and respiration (emergence of an additional C loss process).
显示更多 [+] 显示较少 [-]Elevated pH-mediated mitigation of aluminum-toxicity in sweet orange (Citrus sinensis) roots involved the regulation of energy-rich compounds and phytohormones
2022
Wu, Bi-Sha | Lai, Yin-Hua | Peng, Ming-Yi | Ren, Qian-Qian | Lai, Ning-Wei | Wu, Jincheng | Huang, Zeng-Rong | Yang, Lin-Tong | Chen, Li-Song
For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.
显示更多 [+] 显示较少 [-]Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead – A review
2021
Gul, Iram | Manzoor, Maria | Hashim, Nosheen | Shah, Ghulam Mujtaba | Waani, Sayyada Phziya Tariq | Shāhid, Muḥammad | Antoniadis, Vasileios | Rinklebe, Jörg | Arshad, Muḥammad
Cadmium (Cd) and lead (Pb) are ubiquitously present in surface soils, due to anthropogenic activities, causing threat to ecological and human health because of their carcinogenic nature. They accumulate in large quantities in the environment and affect negatively soil microbiota, plants, animals, and humans. For the cleanup of Cd/Pb polluted soils, different plant species have been studied. Many plants have shown the potential to hyperaccumulate Cd/Pb in their above-ground tissues. These plants decrease soil pH by root exudation or by releasing H⁺ ions, and this, in turn, increases the bioavailability of Cd/Pb for plant uptake. Different environmental processes related to soil organic matter, microorganisms, pH, genetic modifications, and various soil-borne chelating agents affect the potential of phytoremediation technology. Review papers trying to identify a single factor influencing the phytoremediation of heavy metals are available in the literature. However, an integrated approach dealing with different factors involved in the remediation of both metals is scarcely discussed. The main focus of this review is to discuss the phytoextraction technique for Cd/Pb removal from contaminated sites along with detoxification mechanisms. Further, the challenges in the Cd/Pb phytoextraction and different options available to cope with these challenges are also discussed. The update on the relevant findings on the use of microorganisms and amendments in enhancing the Cd/Pb phytoextraction is also provided. Finally, the areas to be explored in future research for the removal of Cd/Pb by integrated strategies have been discussed.
显示更多 [+] 显示较少 [-]Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil
2021
Ali, Amjad | Li, Yiman | Arockiam Jeyasundar, Parimala Gnana Soundari | Azeem, Muhammad | Su, Junfeng | Fazl-i-Wahid, | Mahar, Amanullah | Shah, Muhammad Zahir | Li, Ronghua | Zhang, Zengqiang
Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg⁻¹ in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil β-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5–55.6%. Soil bacterial communities’ distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.
显示更多 [+] 显示较少 [-]Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters
2021
Lu, Yufang | Kronzucker, Herbert J. | Shi, Weiming
Rhizospheric microorganisms such as denitrifying bacteria are able to affect ‘rhizobioaugmention’ in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
显示更多 [+] 显示较少 [-]Glycine transformation induces repartition of cadmium and lead in soil constituents
2019
Zhang, Yulong | He, Shuran | Zhang, Zhen | Xu, Huijuan | Wang, Jinjin | Chen, Huayi | Liu, Yonglin | Wang, Xueli | Li, Yongtao
Heavy metal stress in soil accelerates the plant root exudation of organic ligands. The degradation of exudate ligands can be fundamental to controlling the complexation of heavy metals. However, this process remains poorly understood. Here, we investigated the relationship between the transformation of glycine, a representative amino acid exudate, and cadmium/lead mobility in soils. Two 48-h incubation experiments were conducted after glycine addition to the soils. Parameters related to glycine distribution and degradation, Cd/Pb mobility, and the formation of glycine-Cd complex were analyzed. Glycine addition gradually decreased the Cd and Pb mobility throughout the 48-h incubation. By the end of the experiment, the CaCl₂-extracted Cd and Pb concentrations decreased by 63.5% and 43.6%, respectively. The glycine mineralization was strong in the first 6 h, as indicated by a sharp decrease in CO₂ efflux rates from 10.04 ± 0.62 to 3.51 ± 0.07 mg C–CO₂ kg⁻¹ soil h⁻¹. The mineralization rates notably decreased after 6 h. The comparisons of dissolved organic carbon and hydrolyzable amino acid contents indicated that glycine mineralization in solution (95.6%) was much stronger than that in soil solids (49.3%). At the end of incubation, 0.22 mmol kg⁻¹ glycine remained in soil solids. The remaining glycine provided sufficient sorption sites for Cd²⁺ and Pb²⁺, resulting in enhanced metal fixation via complexation. Comparisons of zeta potentials supported the formation of the glycine-Cd complex. The Cd and Pb immobilization processes could be attributed to metal-glycine complex formation, sorption re-equilibrium, and glycine degradation. These findings emphasize that the biogeochemical processes of glycine, derived from root exudates or protein degradation products, increased the sorption of heavy metals to soils and thus reduced their toxicity to plants.
显示更多 [+] 显示较少 [-]RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere
2015
Mynampati, Kalyan Chakravarthy | Lee, Yong Jian | Wijdeveld, Arjan | Reuben, Sheela | Samavedham, Lakshminarayanan | Kjelleberg, Staffan | Swarup, Sanjay
In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health.
显示更多 [+] 显示较少 [-]