细化搜索
结果 1-10 的 245
Trace element concentrations in the apex predator swordfish (Xiphias gladius) from a Mediterranean fishery and risk assessment for consumers 全文
2017
Gobert, Sylvie | Pasqualini, Vanina | Dijoux, Jessica | Lejeune, Pierre | Durieux, Eric Dominique Henry | Marengo, Michel | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège | Stareso
peer reviewed | Swordfish (Xiphias gladius L., 1758) is an apex predator, highly migratory meso-pelagic fish widely distributed in the Atlantic Ocean and Mediterranean. As top predators, this fish may be the end reservoir of the bioaccumulation of trace elements in a food chain because they occupy higher trophic levels and are an important food source, causing them to be potentially hazardous to consume. This study aims to investigate the concentration of 18 trace elements of Swordfish, caught in the Mediterranean Sea and to discuss human exposure risks. The mean element levels in the fish muscles were clearly below the maximum allowable concentrations established by International food safety regulations. The data suggested that the risk is minor and acceptable for human health. The findings of this study amplify the scarce database on contaminants available, especially new data on “emerging elements”, for this species from the Mediterranean Sea. | Transpolmed Et Post Doc de Michel Marengo
显示更多 [+] 显示较少 [-]A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean 全文
2022
Biton-Porsmoguer, Sebastián | Bănaru, Daniela | Harmelin-Vivien, Mireille | Béarez, Philippe | Bouchoucha, Marc | Marco-Miralles, Françoise | Marquès, Montse | Lloret, Josep
A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean 全文
2022
Biton-Porsmoguer, Sebastián | Bănaru, Daniela | Harmelin-Vivien, Mireille | Béarez, Philippe | Bouchoucha, Marc | Marco-Miralles, Françoise | Marquès, Montse | Lloret, Josep
International audience | Studies integrating trophic ecology, physiological condition and accumulation of heavy metals in top predators, such as swordfish, are needed to better understand the links between them and the risk to humans associated with consumption of these fish. This research focuses on the swordfish of the Catalan Sea and follows a multi method approach that considers their diet, their liver lipid content, and mercury accumulation in their bodies as well as in their prey. The aim is to highlight the links between trophic ecology, physiology (fish condition), and ecotoxicology. Results indicate that poor condition of swordfish based on size and the levels of lipid in the liver, and the high Hg levels accumulated to the trophic web (particularly from cephalopods) may indicate potential unfavourable feeding and reproduction conditions for swordfish in the NW Mediterranean and that this warrants further investigation.
显示更多 [+] 显示较少 [-]A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean 全文
2022
Biton-Porsmoguer, Sebastián | Bănaru, Daniela | Harmelin-Vivien, M. L. (Mireille L.) | Béarez, Philippe | Bouchoucha, Marc | Marco-Miralles, Françoise | Marquès, Montse | Lloret, Josep
Studies integrating trophic ecology, physiological condition and accumulation of heavy metals in top predators, such as swordfish, are needed to better understand the links between them and the risk to humans associated with consumption of these fish. This research focuses on the swordfish of the Catalan Sea and follows a multi method approach that considers their diet, their liver lipid content, and mercury accumulation in their bodies as well as in their prey. The aim is to highlight the links between trophic ecology, physiology (fish condition), and eco-toxicology. Results indicate that poor condition of swordfish based on size and the levels of lipid in the liver, and the high Hg levels accumulated to the trophic web (particularly from cephalopods) may indicate potential unfavourable feeding and reproduction conditions for swordfish in the NW Mediterranean and this warrants further investigation.
显示更多 [+] 显示较少 [-]A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean 全文
2022
Biton-Porsmoguer, Sebastián | Banaru, Daniela | Harmelin-Vivien, Mirelle | Béarez, Philippe | Bouchoucha, Marc | Marco-Miralles, Françoise | Marquès, Montse | Lloret, Josep
10 pages, 4 figures, 4 tables, supplementary data https://doi.org/10.1016/j.marpolbul.2022.113411 | Studies integrating trophic ecology, physiological condition and accumulation of heavy metals in top predators, such as swordfish, are needed to better understand the links between them and the risk to humans associated with consumption of these fish. This research focuses on the swordfish of the Catalan Sea and follows a multi method approach that considers their diet, their liver lipid content, and mercury accumulation in their bodies as well as in their prey. The aim is to highlight the links between trophic ecology, physiology (fish condition), and eco-toxicology. Results indicate that poor condition of swordfish based on size and the levels of lipid in the liver, and the high Hg levels accumulated to the trophic web (particularly from cephalopods) may indicate potential unfavourable feeding and reproduction conditions for swordfish in the NW Mediterranean and this warrants further investigation | Peer reviewed
显示更多 [+] 显示较少 [-]A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean 全文
2022
Biton-porsmoguer, Sebastián | Bănaru, Daniela | Harmelin-vivien, Mireille | Béarez, Philippe | Bouchoucha, Marc | Marco-miralles, Francoise | Marquès, Montse | Lloret, Josep
Studies integrating trophic ecology, physiological condition and accumulation of heavy metals in top predators, such as swordfish, are needed to better understand the links between them and the risk to humans associated with consumption of these fish. This research focuses on the swordfish of the Catalan Sea and follows a multi method approach that considers their diet, their liver lipid content, and mercury accumulation in their bodies as well as in their prey. The aim is to highlight the links between trophic ecology, physiology (fish condition), and eco-toxicology. Results indicate that poor condition of swordfish based on size and the levels of lipid in the liver, and the high Hg levels accumulated to the trophic web (particularly from cephalopods) may indicate potential unfavourable feeding and reproduction conditions for swordfish in the NW Mediterranean and this warrants further investigation.
显示更多 [+] 显示较少 [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries 全文
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
Fuel consumption and air emissions in one of the world’s largest commercial fisheries 全文
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO₂-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO₂ emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO₂ air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
显示更多 [+] 显示较少 [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries 全文
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Bodin, Nathalie
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO2-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO2 emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO2 air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
显示更多 [+] 显示较少 [-]Animal size impacts perfluoroalkyl acid (PFAA) concentrations in muscle tissue of estuarine fish and invertebrate species 全文
2020
Taylor, Matthew D.
Environmental emissions of perfluoroalkyl acids (PFAAs) often contaminate aquatic ecosystems and accumulate in the species therein. This can represent an exposure pathway for human populations where seafood is consumed. Concentrations of PFAAs in water breathing animals may be a function of many different factors, however, little is known about how these different factors impact contaminant accumulation in estuarine and marine species. This study explores the relationships between PFAA accumulation and two key variables, animal size and sediment concentrations, for a number of important seafood species. Sixty Dusky Flathead (Platycephalus fuscus), 58 Mulloway (Argyrosomus japonicus) and 53 Giant Mud Crab (Scylla serrata) were tested for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS) in edible tissues, and the concentrations compared with animal size and sediment concentrations at the location of capture. PFAAs showed a high degree of variation among species, and PFOA and PFHxS were only common in Giant Mud Crab. Log-transformed PFOS concentrations in all three species showed negative correlations with animal size (weight). There was limited evidence for relationships between PFOS muscle tissue concentration and sediment PFOS concentration. The patterns observed are potentially explained by changes in trophic position, relative growth rate, consumption rate and metabolic rate, throughout the species life history. The results contrast with observations for other persistent organic pollutants, whereby larger individuals tend to carry greater contaminant loads. Future work is required to establish whether these patterns are evident for PFAAs in other species and contaminant sources.
显示更多 [+] 显示较少 [-]Distribution characteristics of microplastics in Zhubi Reef from South China Sea 全文
2019
Wong, David Yau-kar | Yan, Muting | Xu, Kaihang | Nie, Huayue | Gong, Han | Wang, Jun
As a new type of emerging pollutant in the ocean, microplastics have received global attention in recent years. Considering the increasing amount of human activities around the South China Sea, it is important to determine the current status of microplastic pollution in this region. In this study, we analyzed the abundance and distribution of microplastics at Zhubi Reef in the South China Sea. Microplastic abundance ranged from 1,400 to 8,100 items/m3 of surface water, which was much higher than the values reported from other ocean areas. About 80% of the microplastics were smaller than 0.5 mm in size. Fibers and pellets comprised the most common microplastic types. The dominant microplastics were transparent or blue in color. The main polymer types were polypropylene (25%) and polyamide (18%). In general, our results revealed Zhubi Reef was contaminated with microplastics, which were likely derived from the intensive fisheries in the area and emissions from coastal cities. This study also provides baseline data that are useful for additional studies of microplastics in the South China Sea.
显示更多 [+] 显示较少 [-]Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China 全文
2018
Hao, Zhuo | Zhang, Xinyu | Gao, Yang | Xu, Zhiwei | Yang, Fengting | Wen, Xuefa | Wang, Yueming
By identifying the main sources of nitrate (NO3−) can obtain useful information to support the management of NO3− pollution, particularly in subtropical catchments with shallow drinking water wells. This study used water chemistry and dual stable isotopes δ15N and δ18O methods to assess seasonal and spatial variations of NO3− in precipitation, surface water, and groundwater in an agricultural and forest subtropical catchment in Jiangxi Province, China. The maximum concentrations of nitrate-nitrogen (NO3−-N) and ammonium-nitrogen (NH4+-N) were 10.4 and 10.8 mg L−1in samples collected from 221 rainfall events from 2011 to 2013. About 4.4% and 12.3% NH4+-N concentrations of surface water and groundwater exceeded the thresholds of 1.0 and 0.2 mg L−1. The NO3−-N concentrations in surface water were closely correlated with NH4+-N concentrations in surface water and groundwater (r = −0.71 and r = −0.71, P < 0.05). The concentrations of NH4+-N and NO3−-N were significantly higher in a fishery pond and nearby drinking wells than in other monitoring points. Annual exports of NO3−-N and NH4+-N were 4.06 × 104 and 8.14 × 103 kg yr−1, respectively and NO3−-N is the main form of N loss. The δ15N values ranged from 0‰ to 20‰ in surface water and groundwater, and the δ18O values ranged from 0‰ to 15‰ and 1‰–13‰, respectively. Dual stable isotope natural abundance distribution and water chemistry [NO3−]/[Cl−] molar ratio information suggested that manure and sewage and soil N were the main sources of NO3− in surface water and manure and sewage in groundwater in summer and winter. In spring, water occurred denitrification and ammonium fertilizer, manure and sewage were the main sources of NO3− in surface water and groundwater which sampling points were closer residential area and fish ponds than paddy field and local farmers used more Manure. Manure applications should be reasonable around drinking water wells to protect the drinking water quality.
显示更多 [+] 显示较少 [-]Levels of PCDD/Fs and dioxin-like PCBs in seafood from Sydney Harbour, Australia 全文
2017
Manning, Therese M. | Roach, Anthony C. | Edge, Katelyn J. | Ferrell, Doug J.
Sydney Harbour, Australia is contaminated with polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) due to a historical Union Carbide chemical manufacturing facility. We measured levels of PCDD/Fs and dl-PCBs in over 400 seafood samples (covering 20 species) collected throughout Sydney Harbour. Concentrations ranged from 0.1 to 193 pg total TEQ (WHO05)/g wet weight. These concentrations were above those considered safe for human consumption in many cases. Dioxin accumulation varied among species and was associated with life history traits. Mobile species had elevated concentrations throughout Sydney Harbour whereas accumulation in species likely to move less widely was dependent on the distance they were caught from the point source. This large scale study on multiple species of recreationally caught seafood resulted in the implementation of human consumption advisories for recreational fishing based on individual species and distance from point source. In addition, all forms of commercial fishing in Sydney Harbour were banned.
显示更多 [+] 显示较少 [-]Trace elements in fragments of fishing net and other filamentous plastic litter from two beaches in SW England 全文
2017
Turner, Andrew
Filamentous plastic litter collected from two beaches in south west England has been characterized by FTIR and XRF. The majority of samples were constructed of polyethylene and consisted of twisted or braided strands of a variety of colours that appeared to be derived from commercial fishing nets. A number of different elements were detected among the samples but, from an environmental perspective, the regular occurrence of Cr and Pb and the occasional or isolated occurrence of Br, Cd and Se were of greatest concern. The highest total concentrations of Br (2420 μg g⁻¹), Cd (1460 μg g⁻¹), Cr (909 μg g⁻¹), Pb (3770 μg g⁻¹) and Se (240 μg g⁻¹) were always encountered among orange samples and are attributed to the presence of lead chromates and cadmium sulphoselenide as colourants and to brominated compounds as flame retardants. Element bioaccessibility was evaluated by ICP-MS following an acidic extraction test that mimics the digestive tract of seabirds, with maximum values after a seven-day incubation period and relative to respective total concentrations of 0.2–0.4% for Cd, Cr and Pb and about 7% for Br. In addition to the well-documented impacts on wildlife through entrapment, filamentous plastic waste may act as a significant source of hazardous chemicals into the marine foodchain through ingestion.
显示更多 [+] 显示较少 [-]Microplastic ingestion in fish larvae in the western English Channel 全文
2017
Steer, Madeleine | Cole, Matthew | Thompson, Richard C. | Lindeque, Penelope K.
Microplastics have been documented in marine environments worldwide, where they pose a potential risk to biota. Environmental interactions between microplastics and lower trophic organisms are poorly understood. Coastal shelf seas are rich in productivity but also experience high levels of microplastic pollution. In these habitats, fish have an important ecological and economic role. In their early life stages, planktonic fish larvae are vulnerable to pollution, environmental stress and predation. Here we assess the occurrence of microplastic ingestion in wild fish larvae. Fish larvae and water samples were taken across three sites (10, 19 and 35 km from shore) in the western English Channel from April to June 2016. We identified 2.9% of fish larvae (n = 347) had ingested microplastics, of which 66% were blue fibres; ingested microfibers closely resembled those identified within water samples. With distance from the coast, larval fish density increased significantly (P < 0.05), while waterborne microplastic concentrations (P < 0.01) and incidence of ingestion decreased. This study provides baseline ecological data illustrating the correlation between waterborne microplastics and the incidence of ingestion in fish larvae.
显示更多 [+] 显示较少 [-]Phosphorus leakage from fisheries sector – A case study in Thailand 全文
2016
Prathumchai, Nuchnapa | Polprasert, Chongchin | Englande, A. J.
Although phosphorus (P) is an essential element needed for all lives, excess P can be harmful to the environment. The objective of this study aims to determine P flows in the fisheries sector of Thailand consisting of both sea and freshwater activities of captures and cultures. Currently, the annual fisheries catch averages 3.44 ± 0.50 Mt. Most comes from marine capture 1.95 ± 0.46 Mt, followed by coastal aquaculture 0.78 ± 0.09 Mt, freshwater aquaculture 0.49 ± 0.05 Mt, and inland capture 0.22 ± 0.01 Mt. Of this total, about 11% is contained in fresh products directly sold in local markets for consumption, while 89% is sent to processing factories prior to being sold in local markets and exported. The quantities of P entering the fisheries sector come from captures, import of fisheries products and feed produced from agriculture. This P input to the fisheries sector is found to average 28,506 t P.y−1 based on the past ten-year records. Of this total, P input from captures accounts for 76%; while, 11% represents aquatic feeds from agriculture and animal manures. About 13% is obtained from the imports of fishery products. Coastal and freshwater aquacultures are found to be P consumers because their feeds are almost all produced from agricultural crops grown inland. Moreover, these activities cause most of P losses, approximately 10,188 t P·y−1, which account for 89% of the total P loss from the fisheries sector. Overall, P in the fisheries sector is found to mobilize through three channels: (a) 44% is consumed within the country; (b) about 16% is exported; and, (c) 40% is lost from the ecosystem. Based on the results of this work it is recommended that future research be directed on ways to minimize P loss and maximize P recycle in Thailand's fisheries sector as to enhance its food security and curtail water pollution.
显示更多 [+] 显示较少 [-]