细化搜索
结果 1-10 的 193
Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays 全文
2022
Ojo, Atinuke F. | Peng, Cheng | Annamalai, Prasath | Megharaj, Mallavarapu | Ng, J. (Jack)
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqᵤₑₒᵤₛ One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
显示更多 [+] 显示较少 [-]Substantial emissions of nitrated aromatic compounds in the particle and gas phases in the waste gases from eight industries 全文
2021
Lu, Chunying | Wang, Xinfeng | Zhang, Jun | Liu, Zhiyi | Liang, Yiheng | Dong, Shuwei | Li, Min | Chen, Jing | Chen, Haibiao | Xie, Huijun | Xue, Likun | Wang, Wenxing
Nitrated aromatic compounds, the ubiquitous nitrogen-containing organic pollutants, impact the environment and organisms adversely. As industrial raw materials and intermediates, nitrated aromatic compounds and their aromatic precursors are widely employed in the industrial production activities. Nevertheless, their emission from industrial waste gases has so far not been studied extensively. In this study, the concentrations of 12 nitrated aromatic compounds in the particle and gas phases downwind of 16 factories encompassing eight industries (i.e., pharmaceutical, weaving and dyeing, herbicide, explosive, painting, phenolic resin, paper pulp and polystyrene foam industries), were determined by ultra-high-performance liquid chromatography-mass spectrometry. Their concentrations in the particle and gas phases from different factories ranged from 114.7 ± 63.5 to 296.6 ± 62.5 ng m⁻³ and 148.7 ± 7.4 to 309.8 ± 26.2 ng m⁻³, respectively, thus, exhibiting significantly high concentrations as compared to the background sites. Among the 12 detected species, 4-nitrophenol, 5-nitrosalicylic acid, 3-nitrosalicylic acid and 4-methyl-2,6-dinitrophenol were observed to be the predominant species, with total fractions up to 47.9–72.3% and 63.1–70.3% in the particle and gas phases, respectively. Their emission profiles with respect to the industrial activities exhibited large discrepancies as compared to the combustion sources, thus, indicating different formation mechanisms. The emission ratios of particulate nitrated aromatic compounds owing to the industrial activities were estimated between 0.5 ± 0.2 and 4.3 ± 1.5 ng μg⁻¹, which were higher than or comparable to those from various combustion sources. The findings from this study confirm the industrial emission to be an important source of nitrated aromatic compounds in the atmosphere. The substantial emissions of nitrated aromatic compounds from various industries reported in this study provide the fundamental basis for further emission estimation and pollution control.
显示更多 [+] 显示较少 [-]Side-chain fluorotelomer-based polymers in children car seats 全文
2021
Wu, Yan | Miller, Gillian Z. | Gearhart, Jeff | Peaslee, Graham | Venier, Marta
Fabric and foam samples from popular children car seats marketed in the United States during 2018 were tested for fluorine content by particle-included gamma ray emission spectroscopy (PIGE, n = 93) and X-ray photoelectron spectroscopy (XPS, n = 36), as well as for per- and polyfluoroalkyl substances (PFAS) by liquid and gas chromatography mass spectrometry (LC/MS and GC/MS, n = 36). PFAS were detected in 97% of the car seat samples analyzed with MS, with total concentrations of 43 PFAS (∑PFAS) up to 268 ng/g. Fabric samples generally had greater ∑PFAS levels than foam and laminated composites of foam and fabric. The three fabric samples with the highest total fluorine content as represented by the highest PIGE signal were also subjected to ultraviolet (UV) irradiation and the total oxidizable precursor (TOP) assay. Results from these treatments, as well as the much higher organofluorine levels measured by PIGE compared to LC/MS and GC/MS, suggested the presence of side-chain fluorotelomer-based polymers (FTPs), which have the potential to readily degrade into perfluoroalkyl acids (PFAAs) under UV light. Furthermore, fluorotelomer (meth)acrylates were found to be indicators for the presence of (meth)acrylate-linked FTPs in consumer products, and thus confirmed that at least half of the tested car seats had FTP-treated fabrics. Finally, extraction of selected samples with synthetic sweat showed that ionic PFAS, particularly those with fluorinated carbons ≤8, can migrate from fabric to sweat, suggesting a potential dermal route of exposure.
显示更多 [+] 显示较少 [-]Iced block method: An efficient method for preparation of micro-sized expanded polystyrene foams 全文
2020
Kwak, Jin Il | An, Youn-Joo
Recently, numerous studies concerning dye-labeled microplastic beads have reported on the end-of-life, environmental effects of microplastics because of their ubiquitous commercial usage. Less is understood about the toxicity and bioaccumulation of plastics other than microplastic beads, which can also harm the environment (e.g., fragments, fibers, foams, and films). Expanded polystyrene (EPS) is widespread in the environment owing to its many uses, however, limited research has been conducted on EPS foams. This study focuses on developing an efficient method for the preparation of micro-sized EPS foams for research purposes and compares it with previous microplastics preparation methods reported in 68 previous studies. It was demonstrated that the iced EPS block method (iced EPS block + water) generated larger quantities of smaller-sized EPS foams (20–200 and 200–500 μm) compared to the EPS + ice + water and EPS + water methods. The optimal protocol includes 1) iced EPS block preparation, 2) grinding and sieving, and 3) collecting. Additionally, it was confirmed that the iced EPS block method requires less money, labor, and time compared to previously reported methods in the literature. The method proposed in this research can assist future investigations into the environmental effects of EPS foams.
显示更多 [+] 显示较少 [-]Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China 全文
2020
Sun, Xuemei | Chen, Bijuan | Xia, Bin | Li, Qiufen | Zhu, Lin | Zhao, Xinguo | Gao, Yaping | Qu, Keming
Microplastics (MPs) pollution in the marine environment has attracted considerable global attention. However, the colonization of microorganisms on mariculture-derived MPs and their effects on mariculture remain poorly understood. In this study, the MPs (fishing nets, foams and floats) and a natural substrate, within size ranges (1–4 mm), were then incubated for 21 days in Sungo Bay (China), and the composition and diversity of bacterial communities attached on all substrates were investigated. Results showed that bacterial communities on MPs mainly originated from their surrounding seawater and sediment, with an average contribution on total MPs adherent population of 47.91% and 37.33%, respectively. Principle coordinate analysis showed that community similarity between MPs and surrounding seawater decreased with exposure time. In addition, lower average bacterial community diversity and higher relative abundances of bacteria from the genera Vibrio, Pseudoalteromonas and Alteromonas on MPs than those in their surrounding seawater and sediments indicated that MPs might enrich potential pathogens and bacteria related with carbohydrate metabolism. They are responsible for the significant differences in KEGG Orthology pathways (infectious disease and carbohydrate metabolism) between MPs and seawater. The KO pathway (Infectious Diseases) associated with MPs was also significantly higher than those with feathers in the nearshore area. MPs might be vectors for enrichment of potentially pathogenic Vibrio, and enhance the ecological risk of MPs to mariculture industry.
显示更多 [+] 显示较少 [-]Determination of dry deposition velocity of polycyclic aromatic hydrocarbons under the sub-tropical climate and its implication for regional cycling 全文
2020
Dotel, Jagdish | Gong, Ping | Wang, Xiaoping | Pokhrel, Balram | Wang, Chuanfei | Nawab, Javed
Atmospheric dry deposition is a major pathway for removal of polycyclic aromatic hydrocarbons (PAHs) from the atmosphere. Despite its significance in the atmospheric environment, measurements of the dry deposition velocity (VDD) and deposition fluxes (FDD) of PAHs are relatively limited. In this study, a passive dry deposition (PAS-DD) collector was co-deployed with passive air sampler polyurethane foam (PAS-PUF) from November 2015 to November 2016 in two major cities (Kathmandu and Pokhara), Nepal, to investigate the VDD and FDD of PAHs. The VDD of PAHs ranged from 0.25 to 0.5 cm s⁻¹ and the annual average was recorded as 0.37 ± 0.08 cm s⁻¹. On the basis of measured VDD, the FDD of ∑15PAHs in Kathmandu and Pokhara were estimated as 66 and 5 kg yr⁻¹ respectively. According to the measured VDD of Kathmandu and Pokhara in this study, and the previously published VDD data of Toronto, Canada, where the same PAS-DD collector was used, a significant multi-linear correlation (r² = 0.79, p < 0.05) was found between VDD of higher molecular weight (HMW with MW ≥ 228.3 and ≥ 4 rings) PAHs and meteorological parameters (precipitation and wind speed) and vapor pressure of PAHs. To the best of our knowledge, this enabled the development of an empirical model that can exhibit the combined effects of meteorological conditions on the VDD of HMW PAHs. The model was used to estimate the VDD values for major cities in the Indo-Gangetic Plain (IGP) region and the maximum estimated proportion of HMW PAHs deposited by dry deposition reached up to 60% of total emissions. Although PAH emissions in the IGP region pose global risks, the results of this study highlight the considerable risk for local IGP residents, due to the large dry deposition proportion of HMW PAHs.
显示更多 [+] 显示较少 [-]Comparison of receptor models for source identification of organophosphate esters in major inflow rivers to the Bohai Sea, China 全文
2020
Qi, Yanjie | Liu, Xing | Wang, Zhen | Yao, Ziwei | Yao, Wenjun | Shangguan, Kuixing | Li, Minghao | Ming, Hongxia | Ma, Xindong
A better understanding of the sources of organophosphate esters (OPEs) is a prerequisite for OPE control and the establishment of related environmental policies. Sources of OPEs in 35 major inflow rivers to the Bohai Sea of China were quantitatively analyzed using three effective receptor models (principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF), and Unmix) in this paper. The similarities and differences in results from PCA-MLR, PMF, and Unmix were discussed in depth. All three models well predicted the spatial variability of the total concentrations of nine OPEs (triethyl phosphate, tri-n-butyl phosphate, triisobutyl phosphate, tri (2-ethylhexyl) phosphate, tri (2-chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, triphenyl phosphate, and triphenylphosphine oxide) (∑₉OPEs) (r² = 0.90–0.96, p = 0.000) and explained 98.4%–101.2% of the observed ∑₉OPEs. The predicted ∑₉OPEs values from each pairwise model were significantly correlated (r² = 0.88–0.91, p = 0.000). Three OPE sources were extracted by all three models: rigid and flexible polyurethane foam/coating, cellulosic/acrylic/vinyl polymer/unsaturated polyester, and polyvinyl chloride, contributing 49.9%, 29.7%, and 20.5% by PCA-MLR, 57.9%, 28.6%, and 13.5% by PMF, and 47.9%, 30.8%, and 22.4% by Unmix to the ∑₉OPEs, respectively. PMF was recommended as the preferred receptor model for analyzing OPE sources in water during the monitoring period because of its optimal performance.
显示更多 [+] 显示较少 [-]Personal exposure to polycyclic aromatic hydrocarbons in Appalachian mining communities 全文
2020
Hendryx, Michael | Wang, Shaorui | Romanak, Kevin A. | Salamova, Amina | Venier, Marta
Coal mining activities may increase residential exposure to polycyclic aromatic hydrocarbons (PAHs), but personal PAH exposures have not been studied in mining areas. We used silicone wristbands as passive personal samplers to estimate PAH exposures in coal mining communities in Central Appalachia in the United States. Adults (N = 101) wore wristbands for one week; 51 resided in communities within approximately three miles of surface mining sites, and 50 resided 10 or more miles from mining sites. Passive indoor polyurethane foam (PUF) sampling was conducted in residents’ homes, and a sample of 16 outdoor PUF samples were also collected. Nine PAH congeners were commonly detected in wristbands (mean ± standard deviation), including phenanthrene (50.2 ± 68.7 ng/g), benz[a]anthracene (20.2 ± 58.2 ng/g), fluoranthene (19.4 ± 24.1 ng/g) and pyrene (15.2 ± 18.2 ng/g). Controlling for participant characteristics and season, participants living closer to mining sites had significantly higher levels of phenanthrene, fluorene, fluoranthene, pyrene and ∑PAHs in wristbands compared to participants living farther from mining. Indoor air showed no significant group differences except for pyrene, but outdoor air showed significant or marginally significant differences for phenanthrene, fluorene, pyrene and ∑PAHs. The results suggest that mining community residents face exposure to outdoor mining-related pollutants, and demonstrate that personal silicone wristbands can be deployed as effective passive sampling devices.
显示更多 [+] 显示较少 [-]Mediterranean dirty edge: High level of meso and macroplastics pollution on the Turkish coast 全文
2019
Gündoğdu, Sedat | Çevik, Cem
It has become apparent that the coastal zones of aquatic environments are significantly affected by plastics pollution. The accumulation of marine plastic litter on beaches is an important problem due to their significant environmental impacts. In this study, 13 coastal areas in Iskenderun Bay (NE Levantine coast of Turkey) were sampled in May 2018 to investigate meso and macroplastic (0.5–123.4 cm) pollution. A total of 1424 meso and macroplastic items in five categories (filament, film, foam, fragments, and pellets) were collected. The average meso and macroplastic concentration was 12.2 ± 3.5 pcs m−2 (12.3 ± 3.5 g m−2) and the mean size for all stations was 3.7 ± 0.16 cm. The highest meso and macroplastic concentration was found in the Dörtyol location (46.2 ± 7.6 pcs m−2) and the lowest concentration was found in the Y. Lagün location (2.3 ± 0.2 pcs m−2). Plastics were separated into 14 different groups based on their origins. The most dominant type was hard plastics (broken, fragmented, and deformed) with 59.8% and greenhouse coverage films with 11%. Our results shows that regardless their source plastics fluxes at beaches from various pathways. Results of this study provide useful information for designing monitoring strategies and setting management goals.
显示更多 [+] 显示较少 [-]The release and earthworm bioaccumulation of endogenous hexabromocyclododecanes (HBCDDs) from expanded polystyrene foam microparticles 全文
2019
Li, Bing | Lan, Zhonghui | Wang, Lei | Sun, Hongwen | Yao, Yiming | Zhang, Kai | Zhu, Lusheng
Hexabromocyclododecanes (HBCDDs) are common chemical additives in expanded polystyrene foam (EPS). To evaluate the bioaccumulation potential of endogenous HBCDDs in EPS microparticles by earthworms, two ecologically different species of earthworms (Eisenia fetida and Metaphire guillelmi) were exposed to soil added with EPS microparticles of different particle sizes (EPS2000, 830–2000 μm and EPS830, <830 μm). To clarify the accumulation mechanisms, leaching experiments using EPS microparticles in different solutions were conducted. After exposure to EPS microparticles-amended soils (S-EPS) for 28 d, the total concentrations of HBCDDs reached 307–371 ng g−1 dw in E. fetida and 90–133 ng g−1 dw in M. guillelmi, which were higher than those in earthworms exposed to the soil that was artificially contaminated with a similar level of HBCDDs directly (ACS). The accumulation of HBCDDs in earthworms was significantly influenced by EPS microparticles' size and earthworms' species. The total concentrations of HBCDDs in earthworms' cast were significantly higher than the theoretical concentration of HBCDDs in S-EPS, which suggested that EPS microparticles can be ingested by earthworms. The release rate of HBCDDs from EPS5000 (2000–5000 μm) into water-based solutions (<1%) after a 3.5-h incubation was far lower than that into earthworm digestive fluid (7%). These results illustrated that the ingestion of EPS microparticles and consequent solubilization of HBCDDs by digestive fluid play an important role in the accumulation of HBCDDs contained in EPS microparticles in earthworms. After a 28-d incubation with the soil solution, 4.9% of the HBCDDs was accumulatively leached from the EPS5000, which indicated that HBCDDs can be released from EPS microparticles to soil environment, and then accumulated by earthworms. Moreover, similar to those exposed to ACS, the diastereoisomer- and enantiomer-specific accumulation of HBCDDs in earthworms occurred when exposed to S-EPS. This study provides more evidence for the risk of microplastics to the soil ecosystem.
显示更多 [+] 显示较少 [-]