细化搜索
结果 1-10 的 193
Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
显示更多 [+] 显示较少 [-]Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels
2022
Wi, Seunghwan | Yang, Sungwoong | Yun, Beom Yeol | Kang, Yujin | Kim, Sumin
According to fire accident statistics, fires in buildings are increasing. The flame-retardant performance of insulation materials is considered an important factor for preventing the spread of fire and ensuring evacuation. This study evaluated the flame-retardant performance and combustion characteristics of four types of organic thermal insulation used as core materials in sandwich panels. The flame-retardant performance evaluation based on total heat release and heat release rate revealed that phenolic foam (PF) satisfied the criteria for non-combustible grade insulation. An analysis of the hazardous gases released while combustion of the four insulation materials indicated that a significant amount of CO was released—an average of 19,000 ppm or higher—in the rigid urethan foam (PIR) and spray-type polyurethane foam (SPU). The fractional effective dose (FED) value was derived from the gas analysis results according to ISO 13344. PIR and SPU had an average FED value of 2.0 or higher and were identified as very dangerous in the case of fire accidents. Moreover, the evacuation time in the case of a fire in a warehouse-type building was comprehensively analyzed considering the material, size, and height for the four types of insulation. PIR was the most vulnerable to fire, and for PF, the danger limit was not reached until the end of the simulation.
显示更多 [+] 显示较少 [-]Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire
2022
Rana, Sahil | Marchiandi, Jaye | Partington, Jordan M. | Szabo, Drew | Heffernan, Amy L. | Symons, Robert K. | Xie, Shay | Clarke, Bradley O.
In 2018, over 30,000 L of fluorine-free firefighting foam was used to extinguish an industrial warehouse fire of uncharacterized chemical and industrial waste. Contaminated firewater and runoff were discharged to an adjacent freshwater creek in Melbourne, Australia. In this study, we applied nontarget analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) to 15 surface water samples to investigate the presence of legacy, novel and emerging per-and polyfluoroalkyl substances (PFAS). We identified six novel and emerging fluorotelomer-based fluorosurfactants in the Australian environment for the first time, including: fluorotelomer sulfonamido betaines (FTABs or FTSA-PrB), fluorotelomer thioether amido sulfonic acids (FTSASs), and fluorotelomer sulfonyl amido sulfonic acids (FTSAS-So). Legacy PFAS including C₆–C₈ perfluoroalkyl sulfonic acids, C₄–C₁₀ perfluoroalkyl carboxylic acids, and perfluoro-4-ethylcyclohexanesulfonate were also detected in surface water. Of note, we report the first environmental detection of ethyl 2-ethenyl-2-fluoro-1-(trifluoromethyl) cyclopropane-1-carboxylate. Analysis of several Class B certified fluorine-free foam formulations allowed for use in Australia revealed that there was no detectable PFAS. Patterns in the homologue profiles of fluorotelomers detected in surface water are consistent with environments impacted by fluorinated aqueous film-forming foams. These results provide strong evidence that firewater runoff of stockpiled fluorinated firefighting foam was the dominant source of detectable PFAS to the surrounding environment.
显示更多 [+] 显示较少 [-]Transport and fate of aqueous film forming foam in an urban estuary
2022
Katz, David R. | Sullivan, Julia C. | Rosa, Kevin | Gardiner, Christine | Robuck, Anna R. | Lohmann, Rainer | Kincaid, Chris | Cantwell, Mark G.
The deployment of aqueous film forming foams (AFFF) used for firefighting during emergencies and training often releases per- and polyfluoroalkyl substances (PFAS) into the environment. In October 2018, first responders in Providence, RI, USA applied an AFFF during a fuel spill. Due to the proximity of the incident to the upper reaches of Narragansett Bay (NB), an unknown quantity of gasoline and AFFF entered the estuary via surface runoff and stormwater drains. Water samples near the spill were collected approximately 15 h after the incident and analyzed for 24 PFAS. Minor increases in measured PFAS concentrations were observed relative to pre- and post-spill samples at monitoring sites near the incident, except 6:2-fluorotelomer sulfonate (6:2-FTS) that peaked post-spill (max 311 ng/L). After performing the total oxidizable precursor (TOP) assay on water samples and the AFFF concentrate, significant increases in perfluorocarboxylic acids (PFCAs) were observed. One compound, 6:2 fluorotelomer mercaptoalkylamido sulfonate (6:2-FTSAS), was identified as a major component of the AFFF used. Peak areas of 6:2-FTSAS and the degradation product 6:2-FTSAS-sulfoxide corresponded to observed increases in the TOP assay results and were useful as tracers of AFFF in surrounding waters. Elevated levels of PFAS at the time of sampling were limited to a confined area of the Providence River due to river flow and tidal action. Observed concentrations were also compared to hydrodynamic model results, and results confirmed rapid dissipation of AFFF components with distance from the spill. However, modeled results did not capture possible secondary releases of AFFF from local municipal stormwater and sewer infrastructure, as observational data suggest. The multiple lines of evidence of PFAS present in surface waters permitted a better assessment of the potential environmental impacts from products such as AFFF for which the chemical composition is largely unknown.
显示更多 [+] 显示较少 [-]Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays
2022
Ojo, Atinuke F. | Peng, Cheng | Annamalai, Prasath | Megharaj, Mallavarapu | Ng, J. (Jack)
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqᵤₑₒᵤₛ One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
显示更多 [+] 显示较少 [-]Occurrence of pyrethroids in the atmosphere of urban areas of Southeastern Brazil: Inhalation exposure and health risk assessment
2021
Guida, Yago | Pozo, Karla | Carvalho, Gabriel Oliveira de | Capella, Raquel | Targino, Admir Créso | Torres, João Paulo Machado | Meire, Rodrigo Ornellas
The occurrence of organochlorine pesticides (OCPs) used decades ago for vector control in urban areas is still reported as a threat to human health. Pyrethroids emerged as a replacement for OCPs in sanitary campaigns and are currently the main insecticides used for vector control worldwide, with prominent use as agricultural and household insecticides, for veterinary and gardening purposes, and as wood preservative. This study aimed to assess the occurrence, seasonal variation, and potential sources of pyrethroids in ambient air of two urban regions of Southeastern Brazil, along with the potential health risks to local populations via inhalation exposure. Pyrethroids were sampled by polyurethane foam passive air samplers and their concentrations were determined by gas chromatography coupled with electron capture negative ionization mass spectrometry (GC/ECNI-MS). Atmospheric pyrethroid concentrations (hereinafter reported in pg m⁻³) were considerably higher than those reported by previous studies worldwide. Cypermethrin (median: 2446; range: 461–15 125) and permethrin (655; 19–10 328) accounted for 95% of the total measured pyrethroids in ambient air. The remaining fraction comprised smaller amounts of bifenthrin (46; <limit of detection (LOD)–5171), deltamethrin (58; <LOD–564), phenothrin (7; <LOD–22) and fenvalerate (0.3; <LOD–3). Bifenthrin, deltamethrin and permethrin were linked to local sources, while cypermethrin, fenvalerate and phenothrin had more prominent regional contributions. In broad terms, most pyrethroids showed no clear seasonal trend. The concentrations and hazard quotients (HQs) showed the following order of occurrence and magnitude: urban > urban-industrial > background areas. HQs increased with decreasing age group, but deterministic and probabilistic estimates did not identify direct health risks for any group. Nevertheless, since only inhalation exposure was considered in this work, other pathways should be investigated to provide a more comprehensive risk assessment of the human exposure to pyrethroids.
显示更多 [+] 显示较少 [-]Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles
2021
Marchiandi, Jaye | Szabo, Drew | Dagnino, Sonia | Green, Mark P. | Clarke, Bradley O.
An industrial warehouse illegally storing a large quantity of unknown chemical and industrial waste ignited in an urban area in Melbourne, Australia. The multiday fire required firefighters to use large amounts of fluorine-free foam that carried contaminated firewater runoff into an adjacent freshwater creek. In this study, the occurrence and fate of 42 per- and polyfluoroalkyl substances (PFASs) was determined from triplicate surface water samples (n = 45) from five locations (upstream, point-source, downstream; 8 km) over three sampling campaigns from 2018 to 2020. Out of the 42 target PFASs, perfluorocarboxylates (PFCAs: C4–C14), perfluoroalkane sulfonates (PFSAs: C4–C10), and perfluoroalkyl acid precursors (e.g. 6:2 fluorotelomer sulfonate (6:2 FTSA)) were ubiquitously detected in surface waters (concentration ranges: <0.7–3000 ng/L). A significant difference in ΣPFAS concentration was observed at the point-source (mean 5500 ng/L; 95% CI: 4800, 6300) relative to upstream sites (mean 100 ng/L; 95% CI: 90, 110; p ≤ 0.001). The point-source ΣPFAS concentration decreased from 5500 ± 1200 ng/L to 960 ± 42 ng/L (−83%) after two months and to 430 ± 15 ng/L (−98%) two years later. 6:2 FTSA and perfluorooctanesulfonate (PFOS) dominated in surface water, representing on average 31% and 20% of the ΣPFAS, respectively. Emerging PFASs including a cyclic perfluoroalkanesulfonate (PFECHS) and a C4 perfluoroalkane sulfonamide (FBSA) were repeatedly present in surface water (concentration ranges <0.3–77 ng/L). According to the updated Australian PFAS guidelines for ecological conservation, the water samples collected at the time of monitoring may have posed a short-term risk to aquatic organisms in regard to PFOS levels. These results illustrate that acute high dose exposure to PFASs can result from industrial fires at sites storing or stockpiling PFAS-based waste products. Continued monitoring will be crucial to evaluate potential long-term risk to wildlife in the region.
显示更多 [+] 显示较少 [-]Iced block method: An efficient method for preparation of micro-sized expanded polystyrene foams
2020
Kwak, Jin Il | An, Youn-Joo
Recently, numerous studies concerning dye-labeled microplastic beads have reported on the end-of-life, environmental effects of microplastics because of their ubiquitous commercial usage. Less is understood about the toxicity and bioaccumulation of plastics other than microplastic beads, which can also harm the environment (e.g., fragments, fibers, foams, and films). Expanded polystyrene (EPS) is widespread in the environment owing to its many uses, however, limited research has been conducted on EPS foams. This study focuses on developing an efficient method for the preparation of micro-sized EPS foams for research purposes and compares it with previous microplastics preparation methods reported in 68 previous studies. It was demonstrated that the iced EPS block method (iced EPS block + water) generated larger quantities of smaller-sized EPS foams (20–200 and 200–500 μm) compared to the EPS + ice + water and EPS + water methods. The optimal protocol includes 1) iced EPS block preparation, 2) grinding and sieving, and 3) collecting. Additionally, it was confirmed that the iced EPS block method requires less money, labor, and time compared to previously reported methods in the literature. The method proposed in this research can assist future investigations into the environmental effects of EPS foams.
显示更多 [+] 显示较少 [-]Determination of dry deposition velocity of polycyclic aromatic hydrocarbons under the sub-tropical climate and its implication for regional cycling
2020
Dotel, Jagdish | Gong, Ping | Wang, Xiaoping | Pokhrel, Balram | Wang, Chuanfei | Nawab, Javed
Atmospheric dry deposition is a major pathway for removal of polycyclic aromatic hydrocarbons (PAHs) from the atmosphere. Despite its significance in the atmospheric environment, measurements of the dry deposition velocity (VDD) and deposition fluxes (FDD) of PAHs are relatively limited. In this study, a passive dry deposition (PAS-DD) collector was co-deployed with passive air sampler polyurethane foam (PAS-PUF) from November 2015 to November 2016 in two major cities (Kathmandu and Pokhara), Nepal, to investigate the VDD and FDD of PAHs. The VDD of PAHs ranged from 0.25 to 0.5 cm s⁻¹ and the annual average was recorded as 0.37 ± 0.08 cm s⁻¹. On the basis of measured VDD, the FDD of ∑15PAHs in Kathmandu and Pokhara were estimated as 66 and 5 kg yr⁻¹ respectively. According to the measured VDD of Kathmandu and Pokhara in this study, and the previously published VDD data of Toronto, Canada, where the same PAS-DD collector was used, a significant multi-linear correlation (r² = 0.79, p < 0.05) was found between VDD of higher molecular weight (HMW with MW ≥ 228.3 and ≥ 4 rings) PAHs and meteorological parameters (precipitation and wind speed) and vapor pressure of PAHs. To the best of our knowledge, this enabled the development of an empirical model that can exhibit the combined effects of meteorological conditions on the VDD of HMW PAHs. The model was used to estimate the VDD values for major cities in the Indo-Gangetic Plain (IGP) region and the maximum estimated proportion of HMW PAHs deposited by dry deposition reached up to 60% of total emissions. Although PAH emissions in the IGP region pose global risks, the results of this study highlight the considerable risk for local IGP residents, due to the large dry deposition proportion of HMW PAHs.
显示更多 [+] 显示较少 [-]Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta
2020
Niu, Shan | Chen, Ruiwen | Zou, Yun | Dong, Liang | Hai, Reti | Huang, Yeru
Research on the atmospheric occurrence of short chain chlorinated paraffins (SCCPs) in industrialized areas is scarce. In this study, we investigated the concentrations, profile, and spatial distribution of SCCPs in the highly industrialized and developed areas of the Yangtze River Delta (YRD) in China using polyurethane foam passive air samplers. Sampling was performed during two separate periods in 2011. The concentrations of atmospheric SCCPs ranged from 6.1 to 63 ng m⁻³ in summer and 6.2–42 ng m⁻³ in winter. The C₁₀ and C₁₁ groups were the predominant carbon groups in all the samples. Different congener patterns between summer and winter were found, indicating that congeners in the air in winter may be influenced by local and external sources. The highest level of SCCPs was found in Suzhou, which is a highly industrialized area with many manufactories including electronic industries and plastic factories. Higher levels of SCCPs were found in the air than polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ether (PBDEs), suggesting that the production and use of SCCPs were much higher than prohibited or restricted persistent organic pollutants (e.g., PCBs, OCPs, and PBDEs). Future studies should investigate the different sources of atmospheric SCCPs by conducting a comprehensive assessment of SCCP exposure.
显示更多 [+] 显示较少 [-]