细化搜索
结果 1-10 的 42
Elimination de l' ammoniac sur divers adsorbants: charbons actifs, tourbe et boues de station d' epuration.
1994
Samanni Vaute L. | Fanlo J.L. | Le Cloirec P.
Concept of anaerobic process for treatment of food industry wastewaters
2001
Klasnja, M. | Sciban, M. (Univerzitet u Novom Sadu, Novi Sad (Yugoslavia). Tehnoloski fakultet)
Concept of anaerobic treatment process of food processing wastewater is discussed. In this scope there are: 1) formulation of anaerobic process, b) general process scheme defining, c) choice of process (digester type, single- and two-step mode, operating temperature), and d) define of process variables (hydraulic and organic load, removal efficiency, quantity and composition of biogas, etc.).
显示更多 [+] 显示较少 [-]Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions
2021
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N₂) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N₂ flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H₂) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H₂ yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
显示更多 [+] 显示较少 [-]In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols
2020
Doan, T.Q. | Connolly, L. | Igout, A. | Müller, M. | Scippo, M.L.
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and several other environment/food-borne toxic compounds induce their toxicity via the aryl hydrocarbon receptor (AhR). AhR is also modulated by various endogenous ligands e.g. highly potent tryptophan (Trp)-derivative FICZ (6-formylindolo[3,2-b]carbazole) and natural ligands abundant in the human diet e.g. polyphenols. Therefore, evaluating AhR species-specific responses is crucial for understanding AhR physiological functions, establishing risk assessments, and exploring the applicability of AhR mediators in drug and food industry towards human-based usages. We studied AhR transactivation of FICZ/TCDD in vitro in a time-dependent and species-specific manner using dioxin responsive luciferase reporter gene assays derived from rat (DR-H4IIE) and human (DR-HepG2) hepatoma cells. We observed for the first time that FICZ potency was similar in both cell lines and was 40 times higher than TCDD in DR-HepG2 cells. Depleting Trp-derivative endogenously produced ligands by using culture medium without Trp, resulted in 3-fold higher AhR activation upon adding FICZ in DR-H4IIE cells, in contrast to DR-HepG2 cells which revealed a fast degradation of FICZ induction from 10 h post-exposure to complete disappearance after 24 h. Seven polyphenols and a mixture thereof, chosen based on commercially recommended doses and adjusted to human realistic exposure, caused rat and human species-specific AhR responses. Two isoflavones (daidzein and genistein) induced rat AhR synergistic effects with FICZ and/or TCDD, while quercetin, chrysin, curcumin, resveratrol, and the mixture exerted a strong inhibitory effect on the human AhR. Strikingly, resveratrol and quercetin at their realistic nanomolar concentrations acted additively in the mixture to abolish human AhR activation induced by various TCDD concentrations. Taken together, these results illustrate the species-specific complexity of AhR transcriptional activities modulated by various ligands and highlight the need for studies of human-based approaches.
显示更多 [+] 显示较少 [-]Influence of perfluorooctanoic acid on proteomic expression and cell membrane fatty acid of Escherichia coli
2017
Yang, Meng | Ye, Jinshao | Qin, Huaming | Long, Yan | Li, Yi
Perfluorooctanoic acid (PFOA) has received an increasing attention in the agricultural and food industries due to its risk to human health. To facilitate the development of novel biomarkers of Escherichia coli against PFOA through multi-omics technologies, and to reveal the resistance mechanism of E. coli against PFOA at protein levels, the interactions among pollutant stress, protein expression and cell metabolism was investigated by using iTRAQ-based quantitative proteomic analysis. The results revealed that the 63 up-regulated proteins mainly involved in tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and fatty acid biosynthesis, whereas, the 69 down-regulated proteins related to oxidative phosphorylation, pyruvate metabolism and the cell cycle-caulobacter pathway, were also associated with the increase of membrane permeability, excessive expenditure of ATP, disruption of fatty acid biosynthesis under PFOA stress. The results provide novel insights into the influence mechanisms of PFOA on fatty acid and protein networks.
显示更多 [+] 显示较少 [-]Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects
2022
Okeke, Emmanuel Sunday | Ezeorba, Timothy Prince Chidike | Mao, Guanghua | Chen, Yao | Feng, Weiwei | Wu, Xiangyang
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
显示更多 [+] 显示较少 [-]Biosafety risk assessment of nanoparticles: Evidence from food case studies
2021
Deng, Jing | Ding, Quan Ming | Jia, Ming Xi | Li, Wen | Zuberi, Zavuga | Wang, Jian Hui | Ren, Jia Li | Fu, Da | Zeng, Xiao Xi | Luo, Jun Fei
Nanotechnology provides a wide range of benefits in the food industry in improving food tastes, textures, sensations, quality, shelf life, and food safety. Recently, potential adverse effects such as toxicity and safety concerns have been associated with the increasing use of engineered nanoparticles in food industry. Additionally, very limited information is known concerning the behavior, properties and effects of food nano-materials in the gastrointestinal tract. There is explores the current advances and provides insights of the potential risks of nanoparticles in the food industry. Specifically, characteristics of food nanoparticles and their absorption in the gastrointestinal tract, the effects of food nanoparticles against the gastrointestinal microflora, and the potential toxicity mechanisms in different organs and body systems are discussed. This review would provide references for further investigation of nano-materials toxicity effect in foods and their molecular mechanisms. It will help to develop safer foods and expand nano-materials applications in safe manner.
显示更多 [+] 显示较少 [-]An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme
2021
Xu, Youqiang | Liu, Xiao | Zhao, Jingrong | Huang, Huiqin | Wu, Mengqin | Li, Xiuting | Li, Weiwei | Sun, Xiaotao | Sun, Baoguo
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
显示更多 [+] 显示较少 [-]Reduction of odours by spraying deodorisation products | Reduction des nuisances olfactives par pulverisation de produits de desodorisation
2000
Ramel, M. (Institut National de l'Environnement et des Risques, Paris (France)) | Bloquel, M. | Paillier, A. | Foray, J.P.
Face au developpement de l'utilisation de produits de desodorisation dits "neutralisants" ou "destructeurs" des odeurs, en pulverisation dans l'atmosphere, a l'emission ou a proximite immediate d'ouvrages responsables d'odeurs, l'INERIS (Institut national de l'environnement industriel et des risques) a procede, pour le compte du ministere de l'Amenagement du Territoire et de l'Environnement et de l'ADEME (Agence de l'environnement et de la maitrise de l'energie), a une etude visant une meilleure connaissance des performances de ces produits. Deux types de produits ont ete testes, en pulverisation ou en lavage sommaire des gaz, dans des conditions reelles d'effluents industriels, et dans des conditions de laboratoire, en determinant les efficacites de traitement olfactometriques (reduction de l'odeur) et physico-chimiques (abattement des composes responsables des odeurs) au moyen d'analyses simultanees. A l'issue de ces essais, on peut conclure que les produits de traitement des odeurs, proposes actuellement sur le marche pour desodoriser l'air vicie dans l'industrie, doivent etre utilises avec une grande prudence. En effet, la plupart des produits de pulverisation peuvent apporter un reel confort olfactif par effet de masquage (remplacement d'une mauvaise odeur par une odeur "agreable"), mais il ne faut pas en attendre, a priori, un abattement significatif des polluants presents dans l'air malodorant
显示更多 [+] 显示较少 [-]Hybrid of sodium polytungstate polyoxometalate supported by the green substrate for photocatalytic degradation of auramine-O dye
2022
Mousavi, Seyyed Mojtaba | Hashemi, Seyyed Alireza | Bahrani, Sonia | Mosleh, Soleiman | Chiang, Wei-Hung | Yousefi, Khadije | Ramakrishna, Seeram | Wei, Lai Chin | Omidifar, Navid
Nowadays, textile industries have severely polluted the ecosystem and water sources via disposal of highly thermo- and photo-stable dyes within the ecology that require practical strategies to remove them from nature. In studies, the photocatalytic disinfection technique has been shown to have widespread applications in indoor air, environmental health, detection, biological, biomedical, laboratory hospital, pharmaceutical food industry, plant safety, waste water, effluents disposal, and drinking water disinfection. Herein, the sodium polytungstate (SPT) polyoxometalate (POM) was synthesized through a multi-step production procedure and hence modified via employing a green protocol by using tartaric acid, glutamic acid, and kombucha solvent toward efficient and total complete removal of the highly toxic, stable, and carcinogenic auramine-O (AO) dye from aqueous media. In this regard, developed materials were well-characterized, and their photocatalysis performance for photodegradation of AO dye was examined. Achieved results showed that the optimum absorption conditions were achieved at pH of 5.0, 15 mg/L of AO concentration, 0.04 g of photocatalyst dosage, and 110 min irradiation time, where SPT and modified SPT via green protocol showed full desirability (desirability function (DF) index of 1) along with 71.75 and 100% removal percentage, respectively. Obtained results justified the superior photocatalytic role of the SPT POM and its derived nanocluster that can be used for the complete removal of highly stable dyes from aqueous media till reaching the drinking water standard.
显示更多 [+] 显示较少 [-]