细化搜索
结果 1-10 的 11
6-benzylaminopurine exposure induced development toxicity and behaviour alteration in zebrafish (Danio rerio)
2021
Yang, Mengying | Qiu, Jinyu | Zhao, Xin | Feng, XiZeng
6-benzylaminopurine (6-BA) is one of the first synthetic hormones and has been widely used in fruit cultivation, gardening and agriculture. However, excessive use of 6-BA will cause potential harm to the environment and humans. Therefore, our research focused on assessing the impact of 6-BA on the development and neurobehavior of zebrafish. The results showed that 6-BA had little effect on the embryos from 2 hpf to 10 hpf. However, delayed development, decreased survival and hatchability were observed under 30 and 40 mg/L 6-BA from 24 hpf. 6-BA also reduced surface tension of embryonic chorions at 24 hpf. In addition, 6-BA caused abnormal morphology and promoted the accumulation of oxidative stress. Transcription of genes in connection with development and oxidative stress was also strikingly altered. Results of movement assay showed that zebrafish were less active and their behavior was significantly inhibited under the 20 and 30 mg/L 6-BA treatments. Locomotion-related genes th and mao were down-regulated by gradient, while the transcription of dbh was upregulated at a low concentration (2 mg/L) but decreased as the concentration increased. Moreover, 6-BA exposure caused increased arousal and decreased sleep. Sleep/wake related genes hcrt and hcrtr2 were upregulated, but decreased at 30 mg/L, while the mRNA level of aanat2 was reduced in a concentration-dependent manner. To sum up, our results showed that 6-BA induced developmental toxicity, promoted the accumulation of oxidative stress, and damaged locomotion and sleep/wake behavior.
显示更多 [+] 显示较少 [-]Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China
2014
Li, Lianzhen | Wu, Huifeng | van Gestel, Cornelis A.M. | Peijnenburg, Willie J.G.M. | Allen, Herbert E.
The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg−1) and Zn (168 mg kg−1) in old apple orchards and Pb (73 mg kg−1) and Cd (0.57 mg kg−1) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R2 = 0.70, p < 0.001 for Cu; R2 = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.
显示更多 [+] 显示较少 [-]Effects of nanoTiO2 on tomato plants under different irradiances
2019
Ko, Jung Aa | Hwang, Yu Sik
In this study, we investigated the physiological and photochemical influences of nanoTiO2 exposure on tomato plants (Lycopersicum esculentum Mill.). Tomato plants were exposed to 100 mg L−1 of nanoTiO2 for 90 days in a hydroponic system. Light irradiances of 135 and 550 μmolphoton m−2 s−1 were applied as environmental stressors that could affect uptake of nanoTiO2. To quantify nanoTiO2 accumulation in plant bodies and roots, we used transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, and X-ray powder diffraction. Phenotypic and physiological influences such as color change, growth rate, fruit productivity, pigment concentration, and enzyme activity (SOD, CAT, APX) were monitored. We observed numerous effects caused by high irradiance and nanoTiO2 exposure, such as rapid chlorophyll decrease, increased anthocyanin and carotenoid concentrations, high enzymatic activity, and an approximately eight-fold increase in fruit production. Moreover, light absorption in the nanoTiO2-treated tomato plants, as measured by a ultraviolet–visible light spectrometer, increased by a factor of approximately 19, likely due to natural pigments that worked as sensitizers, and this resulted in an ∼120% increase in photochemical activities on A, ФPSII, ФCO2, gsw, and E.
显示更多 [+] 显示较少 [-]Accumulation of Heavy Metals in Flowers of Fruit Species
2014
Milošević, Tomo | Đurić, Milena | Milošević, Nebojša
The main objective of the present study is to measure the levels of heavy metals in important fruit species such as apple, apricot, and nectarine and their nine, five, and six cultivars, respectively. This work investigates the accumulation of Fe, Cu, Zn, Ni, Cd, Pb, and Cr in flowers of above species, to measure the levels of heavy metal contamination. The obtained results revealed that amounts of heavy metals significantly varied among cultivars at the same species and were within the permissible amounts in general. The Cd was not detected in apricot, nectarine, and the most of apple cultivars. Results for floral Fe, and also for Cu and Zn, which are the most important micronutrients for fruit production, suggest that levels of these elements might be used for assessing the storage of these elements during the previous season. We assume that the production of apple, apricot, and nectarine is safe, and there is no risk of contamination with heavy metals.
显示更多 [+] 显示较少 [-]Developing the collection of statistical food waste data on the primary production of fruit and vegetables
2021
Joensuu, Katri | Hartikainen, Hanna | Karppinen, Sirpa | Jaakkonen, Anna-Kaisa | Kuoppa-aho, Mika
In order to meet global goals of reducing food waste, feasible monitoring methods to verify the impact of reduction measures are needed. In this study, a method was developed for gathering food waste data related to the primary production of fruit and vegetables using a questionnaire for farmers. A data collection form was planned and tested for this purpose. Data was collected on the volumes of different uses of yields and the reasons why part of the yield does not end up in food use. The crop species that were included in this pilot study were food potatoes, carrots, white cabbage, and strawberries. In primary production, the share of food use of the total yield was highest for potatoes (96%) and lowest for carrots (72%). In the case of strawberries and white cabbage, 86% and 90% were used as food, respectively. In the future, it is recommended that this kind of survey be added to annual crop production surveys that cover agricultural and horticultural enterprises in Finland. To improve the response rate and decrease the reporting load of farmers, it is important that the questionnaire is designed to be as easy as possible to answer.
显示更多 [+] 显示较少 [-]Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany
2021
Friedle, Carolin | Wallner, Klaus | Rosenkranz, Peter | Martens, Dieter | Vetter, Walter
Insect-pollinated plants are essential for honey bees to feed their brood. In agricultural landscapes, honey bees and other pollinators are often exposed to pesticides used for cultivation. In order to gain more insight into the fluctuation of pesticide loads, 102 daily pollen samples were collected between April and July 2018 in a fruit-growing area in Southern Germany. Samples were analyzed with respect to more than 260 pesticides using a multi-residue pesticide analysis method. Almost 90% of the analyzed pollen samples featured between one and thirteen different pesticides. In total, 29 pesticides were detected at maximum concentrations of up to 4500 ng/g pollen. Maximum residual concentrations of most pesticides were observed during April and the first half of May, as well as during the second half of June. In most cases, serial data of pesticide residuals were detected for approximately 10 subsequent days with two or three maximum values, which were several folds higher than concentrations on the days before and thereafter. The pollen hazard quotient (PHQ) was calculated to estimate the risk of the detected pesticides to honey bees and wild pollinators.
显示更多 [+] 显示较少 [-]Heavy metal levels in kiwifruit orchard soils and trees and its potential health risk assessment in Shaanxi, China
2016
Guo, Jing | Yue, Tianli | Li, Xiaotong | Yuan, Yahong
Concentrations of five heavy metals (Cr, Cu, Cd, Hg, and Pb) in orchard soils and kiwifruit tissues (root, twig, leave, fruit) collected from Shaanxi province in China were measured, and the potential health risk for human through the fruit consumption was assessed. The orchard soils were in no pollution for Cr, Cu, Hg, and Pb, with their pollution index (PI) ≤1, while 10.0 % of the soil samples were under Cd contamination. Furthermore, kiwifruit tended to have a higher Cd and Hg accumulation (as indicated by Biological Accumulation Coefficient) from soil and have a higher Cu and Hg translocation (as reflected by Biological Transfer Coefficient) to aboveground parts. From the human health point of view, the DIM and HRI values for all the fruit samples were within the safe limits, while for Cr, Cu, Cd, Hg, and Pb, about 22.5, 12.5, 52.5, 15.0, and 47.5 % of the fruit samples exceeded the national maximum permissible levels, respectively. These results showed that, although there was no possible health risk to consumers due to intake of studied kiwifruit fruits under the current consumption rate, the regular survey of heavy metal pollution levels should be performed for the kiwifruit in Shaanxi province and a strict management program should be established to reduce the amount of chemical fertilizers and pesticides used in fruit production in order to prevent the potential health risk.
显示更多 [+] 显示较少 [-]Farm and product carbon footprints of China’s fruit production—life cycle inventory of representative orchards of five major fruits
2016
Yan, Ming | Cheng, Kun | Yue, Qian | Yan, Yu | Rees, R. M. (Robert M.) | Pan, Genxing
Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China’s fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO₂-eq ha⁻¹ across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO₂-eq kg⁻¹ fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO₂-eq g⁻¹ Vc on average) was significantly lower than others (3.0–5.9 kg CO₂-eq g⁻¹ Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO₂-eq USD⁻¹, respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO₂-eq USD⁻¹). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers’ income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer’s income, and climate change mitigation.
显示更多 [+] 显示较少 [-]Environmental impacts of chemical and microbial grouting
2020
Naeimi, Maryam | Haddad, Abdolhosein
Climate change is considered the major environmental challenge for the world. Cement and lime production is a highly energy-consuming, heavily polluting process, and the CO₂ emissions are very substantial. Alkaline environment, high temperature, and long processing time lead the researchers to work on alternative soil improvements. Microbially induced calcite precipitation (MICP) has been introduced as a technique for modification of geotechnical properties of sand. The main purpose of the present study was to focus on the efficiency and environmental impact of conventional and microbial grouting. Samples were treated with three chemical stabilizers, namely Portland cement, lime, and cement and lime. The stabilizers were injected with flow gravity and constant head which are almost the same as microbial grouting. Then, the results of conventional grouting were compared with the results of biocement samples which were gathered from previous studies to discuss the efficiency and environmental impacts. The results for treated samples were discussed and compared based on 1 m³ of soil and a final target of 700 kPa. It was found that in order to obtain the same compressive strength, the cost and calcium carbonate consumption of the cement injection method were 2.5 times more than those of the microbial method. Biocementation has some advantages over existing technologies, such as less calcium usage in the same unconfined compressive strength (UCS).
显示更多 [+] 显示较少 [-]Multiyear life energy and life cycle assessment of orange production in Iran
2019
Alishah, Ali | Motevali, Ali | Tabatabaeekoloor, Reza | Hashemi, Seyyed Jafar
Increasing agricultural production requires the application of more chemical inputs during the growth of different crops. This study aims at assessing the energy indicators and environmental impacts during the initial 7-year growth of orange orchards. Through the life cycle assessment (LCA) technique, the hotspots in 11 environmental indicators of the orange orchard growth were determined for different years. The system boundaries were considered to be the orange orchard gates, and the functional units were 1 kg of orange and 1-h orange orchard. The energy input of nitrogen fertilizer, diesel, and human labor has the biggest share in the total energy inputs. The total average energy input and energy output (in 7 years) were calculated as 62,917.027 MJ/ha and 47,618.17 MJ/ha, respectively. The results showed that the energy indices (energy efficiency and net energy) were increasing from year first to seventh and also the share of renewable energy increased. According to the results, with respect to the highest share for production of 1 kg orange in different criteria, nitrogen fertilizer was the main contributor to abiotic depletion and human toxicity, orchard field emissions and nitrogen fertilizer had the highest shares in global warming and photochemical oxidation, fossil fuels and nitrogen fertilizer were the highest contributors to ozone layer depletion, whereas ecotoxicity was mainly affected by chemical fertilizers and orchard surface emissions. Finally, the main contributor for acidification and eutrophication was surface emissions. In the study of environmental impacts from the first to the seventh year, it should be noted that if the functional unit is considered mass based (1 kg orange), due to the unproductive of the trees in the first to third years (low fruit production), the environmental effects are high and then it decreases after the third year due to increasing the yield of the product. Generally, with consideration of the tree growth period, the useful data of energy and environmental impacts for production horticultural products can be provided so that we can avoid multiple interpretations of results associated to reporting annual energy and environmental impact variations.
显示更多 [+] 显示较少 [-]