细化搜索
结果 1-10 的 128
Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes 全文
2022
Okamoto, Konori | Nomura, Miho | Horie, Yoshifumi | Okamura, Hideo
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
显示更多 [+] 显示较少 [-]Enhanced toxicity effects of iron particles together with PFOA in drinking water 全文
2022
Qin, Xinyi | Zhuang, Yuan | Ma, Juan | Liu, Sijin | Shi, Baoyou
Iron particles present in drinking water distribution systems (DWDSs) could cause discoloration, while organic pollutants in DWDSs, such as perfluorooctanoic acid (PFOA), could be enriched by iron particles. However, little is known about the enhanced effects of PFOA and iron particles in DWDSs. To fill in these knowledge gaps, herein, iron-PFOA (FEP) particles were generated using residual chlorine as an oxidant in drinking water conditions and then separated into different sizes (ranging from small to large: FEP-S, FEP-M ,and FEP-L). FEP-S harbored the greatest cytotoxicity among the sizes. Interestingly, our data revealed that the PFOA released from FEP particles transformed into PFOS (perfluorooctane sulfonate) upon digestion in the gastrointestinal environment (GI), and FEP-L bored the strongest transformation, showing a toxicity profile that was distinct from that of FEP-S. Furthermore, mechanistic studies revealed that FEP per se should be accountable for the conversion of PFOA to PFOS dependent on the generation of hydroxyl radicals (·OH) in GI, and that FEP-L revealed the greatest production of ·OH. Collectively, these results showed how iron particles and PFOA could result in enhanced toxicity effects in drinking water: (i) PFOA could increase the toxicity of iron particles by reducing particle size and inducing higher generation of ·OH; (ii) iron particles could induce the transformation of PFOA into more toxic PFOS through digestion.
显示更多 [+] 显示较少 [-]Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis 全文
2022
Keulers, Loret | Dehghani, Ali | Knippels, Leon | Garssen, J. | Papadopoulos, Nikolaos | Folkerts, Gert | Braber, Saskia | van Bergenhenegouwen, Jeroen
Air pollution exposure is a public health emergency, which attributes globally to an estimated seven million deaths on a yearly basis We are all exposed to air pollutants, varying from ambient air pollution hanging over cities to dust inside the home. It is a mixture of airborne particulate matter and gases that can be subdivided into three categories based on particle diameter. The smallest category called PM₀.₁ is the most abundant. A fraction of the particles included in this category might enter the blood stream spreading to other parts of the body. As air pollutants can enter the body via the lungs and gut, growing evidence links its exposure to gastrointestinal and respiratory impairments and diseases, like asthma, rhinitis, respiratory tract infections, Crohn's disease, ulcerative colitis, and abdominal pain. It has become evident that there exists a crosstalk between the respiratory and gastrointestinal tracts, commonly referred to as the gut-lung axis. Via microbial secretions, metabolites, immune mediators and lipid profiles, these two separate organ systems can influence each other. Well-known immunomodulators and gut health stimulators are probiotics, prebiotics, together called synbiotics. They might combat air pollution-induced systemic inflammation and oxidative stress by optimizing the microbiota composition and microbial metabolites, thereby stimulating anti-inflammatory pathways and strengthening mucosal and epithelial barriers. Although clinical studies investigating the role of probiotics, prebiotics, and synbiotics in an air pollution setting are lacking, these interventions show promising health promoting effects by affecting the gastrointestinal- and respiratory tract. This review summarizes the current data on how air pollution can affect the gut-lung axis and might impact gut and lung health. It will further elaborate on the potential role of probiotics, prebiotics and synbiotics on the gut-lung axis, and gut and lung health.
显示更多 [+] 显示较少 [-]Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption 全文
2022
Pan, Zhong | Liu, Qianlong | Xu, Jing | Li, Weiwen | Lin, Hui
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual⁻¹, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
显示更多 [+] 显示较少 [-]Marine mammals and microplastics: A systematic review and call for standardisation 全文
2021
Zantis, Laura J. | Carroll, Emma L. | Nelms, Sarah E. | Bosker, Thijs
Microplastics receive significant societal and scientific attention due to increasing concerns about their impact on the environment and human health. Marine mammals are considered indicators for marine ecosystem health and many species are of conservation concern due to a multitude of anthropogenic stressors. Marine mammals may be vulnerable to microplastic exposure from the environment, via direct ingestion from sea water, and indirect uptake from their prey. Here we present the first systematic review of literature on microplastics and marine mammals, composing of 30 studies in total. The majority of studies examined the gastrointestinal tracts of beached, bycaught or hunted cetaceans and pinnipeds, and found that microplastics were present in all but one study, and the abundance varied between 0 and 88 particles per animal. Additionally, microplastics in pinniped scats (faeces) were detected in eight out of ten studies, with incidences ranging from 0% of animals to 100%. Our review highlights considerable methodological and reporting deficiencies and differences among papers, making comparisons and extrapolation across studies difficult. We suggest best practices to avoid these issues in future studies. In addition to empirical studies that quantified microplastics in animals and scat, ten studies out of 30 (all focussing on cetaceans) tried to estimate the risk of exposure using two main approaches; i) overlaying microplastic in the environment (water or prey) with cetacean habitat or ii) proposing biological or chemical biomarkers of exposure. We discuss advice and best practices on research into the exposure and impact of microplastics in marine mammals. This work on marine ecosystem health indicator species will provide valuable and comparable information in the future.
显示更多 [+] 显示较少 [-]Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin 全文
2021
Hua, Qing | Adamovsky, Ondrej | Vespalcova, Hana | Boyda, Jonna | Schmidt, Jordan T. | Kozuch, Marianne | Craft, Serena L.M. | Ginn, Pamela E. | Smatana, Stanislav | Budinska, Eva | Persico, Maria | Bisesi, Joseph H. | Martyniuk, Christopher J.
Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]−cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.
显示更多 [+] 显示较少 [-]Evidence for rapid gut clearance of microplastic polyester fibers fed to Chinook salmon: A tank study 全文
2020
Spanjer, Andrew R. | Liedtke, Theresa L. | Conn, Kathleen E. | Weiland, Lisa K. | Black, Robert W. | Godfrey, Nathan
Marine and freshwater plastic pollution is a challenging issue receiving large amounts of research and media attention. Yet, few studies have documented the impact of microplastic ingestion to aquatic organisms. In the Pacific Northwest, Chinook salmon are a culturally and commercially significant fish species. The presence of marine and freshwater microplastic pollution is well documented in Chinook salmon habitat, yet no research has investigated the impacts to salmon from microplastic ingestion. The majority of the marine microplastics found in the Salish Sea are microfibers, synthetic extruded polymers that come from commonly worn clothing. To understand the potential impacts of microfiber ingestion to fish, we ran a feeding experiment with juvenile Chinook salmon to determine if ingested fibers are retained or digestion rates altered over a 10 day digestion period. The experiment was completed in two trials, each consisted of 20 control and 20 treatment fish. Treatment fish were each fed an amended ration of 12 food pellets spiked with 20 polyester microfibers and control fish were fed the same ration without added microfibers. Fish were sampled at day 0, 3, 5, 7, and 10 to assess if fibers were retained in their gastrointestinal tract and to determine the rate of digestion. Fibers for the experiment came from washing a red polyester fleece jacket in a microfiber retention bag. Fibers had a mean length of 4.98 mm. Results showed fish were able to clear up to 94% of fed fibers over 10 days. Differences in mean gastrointestinal mass were not statistically significant at any sampled time between treatment and controls, suggesting that the ingestion of microfibers did not alter digestion rates. Further work is needed to understand if repeated exposures, expected in the environment, alter digestion or food assimilation for growth.
显示更多 [+] 显示较少 [-]Stimulated Raman microspectroscopy as a new method to classify microfibers from environmental samples 全文
2020
Laptenok, Sergey P. | Martin, Cecilia | Genchi, Luca | Duarte, Carlos M. | Liberale, Carlo
Microfibers are reported as the most abundant microparticle type in the environment. Their small size and light weight allow easy and fast distribution, but also make it challenging to determine their chemical composition. Vibrational microspectroscopy methods as infrared and spontaneous Raman microscopy have been widely used for the identification of environmental microparticles. However, only few studies report on the identification of microfibers, mainly due to difficulties caused by their small diameter. Here we present the use of Stimulated Raman Scattering (SRS) microscopy for fast and reliable classification of microfibers from environmental samples. SRS microscopy features high sensitivity and has the potential to be faster than other vibrational microspectroscopy methods. As a proof of principle, we analyzed fibers extracted from the fish gastrointestinal (GIT) tract, deep-sea and coastal sediments, surface seawater and drinking water. Challenges were faced while measuring fibers from the fish GIT, due to the acidic degradation they undergo. However, the main vibrational peaks were still recognizable and sufficient to determine the natural or synthetic origin of the fibers. Notably, our results are in accordance to other recent studies showing that the majority of the analyzed environmental fibers has a natural origin. Our findings suggest that advanced spectroscopic methods must be used for estimation of the plastic fibers concentration in the environment.
显示更多 [+] 显示较少 [-]Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils 全文
2018
Moreira, Leo J.D. | da Silva, Evandro B. | Fontes, Maurício P.F. | Liu, Xue | Ma, Lena Q.
Even though the Amazon region is widely studied, there is still a gap regarding Cr exposure and its risk to human health. The objectives of this study were to 1) determine Cr concentrations in seven chemical fractions and 6 particle sizes in Amazon soils, 2) quantify hexavalent Cr (CrVI) concentrations using an alkaline extraction, 3) determine the oral and lung bioaccessible Cr, and 4) assess Cr exposure risks based on total and bioaccessible Cr in soils. The total Cr in both A (0–20 cm) and B (80–100 cm) horizons was high at 2346 and 1864 mg kg⁻¹. However, sequential extraction indicated that available Cr fraction was low compared to total Cr, with Cr in the residual fraction being the highest (74–76%). There was little difference in total Cr concentrations among particle sizes. Hexavalent Cr concentration was also low, averaging 0.72 and 2.05 mg kg⁻¹ in A and B horizon. In addition, both gastrointestinal (21–22 mg kg⁻¹) and lung (0.95–1.25 mg kg⁻¹) bioaccessible Cr were low (<1.2%). The low bioavailability of soil Cr and its uniform distribution in different particle sizes indicated that Cr was probably of geogenic origin. Exposure based on total Cr resulted in daily intake > the oral reference dose for children, but not when using CrVI or bioaccessible Cr. The data indicated that it is important to consider both Cr speciation and bioaccessibility when evaluating risk from Cr in Amazon soils.
显示更多 [+] 显示较少 [-]Health conditions in rural areas with high livestock density: Analysis of seven consecutive years 全文
2017
van Dijk, Christel E. | Zock, Jan-Paul | Baliatsas, Christos | Smit, Lidwien A.M. | Borlée, Floor | Spreeuwenberg, Peter | Heederik, Dick | Yzermans, C Joris
Previous studies investigating health conditions of individuals living near livestock farms generally assessed short time windows. We aimed to take time-specific differences into account and to compare the prevalence of various health conditions over seven consecutive years. The sample consisted of 156,690 individuals registered in 33 general practices in a (rural) area with a high livestock density and 101,015 patients from 23 practices in other (control) areas in the Netherlands. Prevalence of health conditions were assessed using 2007–2013 electronic health record (EHR) data. Two methods were employed to assess exposure: 1) Comparisons between the study and control areas in relation to health problems, 2) Use of individual estimates of livestock exposure (in the study area) based on Geographic Information System (GIS) data. A higher prevalence of chronic bronchitis/bronchiectasis, lower respiratory tract infections and vertiginous syndrome and lower prevalence of respiratory symptoms and emphysema/COPD was found in the study area compared with the control area. A shorter distance to the nearest farm was associated with a lower prevalence of upper respiratory tract infections, respiratory symptoms, asthma, COPD/emphysema, allergic rhinitis, depression, eczema, vertiginous syndrome, dizziness and gastrointestinal infections. Especially exposure to cattle was associated with less health conditions. Living within 500m of mink farms was associated with increased chronic enteritis/ulcerative colitis. Livestock-related exposures did not seem to be an environmental risk factor for the occurrence of health conditions. Nevertheless, lower respiratory tract infections, chronic bronchitis and vertiginous syndrome were more common in the area with a high livestock density. The association between exposure to minks and chronic enteritis/ulcerative colitis remains to be elucidated.
显示更多 [+] 显示较少 [-]