细化搜索
结果 1-10 的 12
Role of non-enzymatic antioxidants on the bivalves' adaptation to environmental mercury: Organ-specificities and age effect in Scrobicularia plana inhabiting a contaminated lagoon
2012
Ahmad, I. | Mohmood, I. | Coelho, J.P. | Pacheco, M. | Santos, M.A. | Duarte, A.C. | Pereira, E.
This study aimed to investigate the role of non-enzymatic antioxidants on adaptive skills over time in the bivalve Scrobicularia plana environmentally exposed to mercury. Inter-age (2⁺, 3⁺, 4⁺, 5⁺ year old) and organ-specific (gills, digestive gland) approaches were applied in bivalves collected from moderately and highly contaminated sites at Ria de Aveiro (Portugal). S. plana's adaptive skills were dependent on the contamination extent; under moderate contamination scenario, the intervention of the different antioxidants took place harmoniously, evidencing an adjustment capacity increasing with the age. Under higher contamination degree, S. plana failed to cope with mercury threat, showing an age-dependent deterioration of the defense abilities. In organ-specific approach, the differences were particularly evident for thiol-compounds, since only gills displayed the potential to respond to moderate levels by increasing non-protein thiols and total glutathione. Under high contamination degree, both organs were unable to increase thiol-compounds, which were compensated by the ascorbic acid elevation.
显示更多 [+] 显示较少 [-]Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis
2012
Leterrier, Marina | Airaki, Morad | Palma, José M. | Chaki, Mounira | Barroso, Juan B. | Corpas, Francisco J.
Environmental contamination by arsenic constitutes a problem in many countries, and its accumulation in food crops may pose health complications for humans. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved at various levels in the mechanism of responding to environmental stress in higher plants. Using Arabidopsis seedlings exposed to different arsenate concentrations, physiological and biochemical parameters were analyzed to determine the status of ROS and RNS metabolisms. Arsenate provoked a significant reduction in growth parameters and an increase in lipid oxidation. These changes were accompanied by an alteration in antioxidative enzymes and the nitric oxide (NO) metabolism, with a significant increase in NO content, S-nitrosoglutathione reductase (GSNOR) activity and protein tyrosine nitration as well as a concomitant reduction in glutathione and S-nitrosoglutathione (GSNO) content. Our results indicate that 500 μM arsenate (AsV) causes nitro-oxidative stress in Arabidopsis, being the glutathione reductase and the GSNOR activities clearly affected.
显示更多 [+] 显示较少 [-]Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean
2013
Souza, Silvia R. | Blande, James D. | Holopainen, Jarmo K.
The roles that ozone and nitric oxide (NO), the chief O3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O3 (NO/O3) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
显示更多 [+] 显示较少 [-]Increased antioxidant response and capability to produce ROS in hemocytes of Pinna nobilis L. exposed to anthropogenic activity
2013
Sureda, Antoni | Natalotto, Antonino | Álvarez, Elvira | Deudero, Salud
Environmental pollutants exert immunotoxical effects on aquatic organisms. The aim was to determine the antioxidant response, markers of oxidative damage and reactive oxygen species production in hemocytes of Pinna nobilis, the largest endemic bivalve in the Mediterranean Sea, under anthropogenic pressure. P. nobilis individuals were collected from two locations along Mallorca Island waters attending to different degree of human impact and the hemocytes were obtained. Specimens from the impacted area showed increased activities of the antioxidant enzymes – catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase –, myeloperoxidase activity and reduced glutathione levels. No differences in oxidative damage markers – malondiahdehyde and carbonyl index – were evidenced between the pristine and polluted areas. Hemocytes from the polluted area presented increased capability to generate reactive oxygen species and nitrite/nitrate when activated. In conclusion, the human activities primed hemocytes for oxidative burst and increased the antioxidant mechanism without evidence of oxidative damage.
显示更多 [+] 显示较少 [-]How the redox state of tobacco ‘Bel-W3’ is modified in response to ozone and other environmental factors in a sub-tropical area?
2011
Dias, Ana P.L. | Dafré, Marcelle | Rinaldi, Mirian C.S. | Domingos, Marisa
This study intended to determine whether the redox state in plants of Nicotiana tabacum ‘Bel-W3’ fluctuates in response to the environmental factors in a sub-tropical area contaminated by ozone (São Paulo, SE – Brazil) and which environmental factors are related to this fluctuation, discussing their biomonitoring efficiency. We comparatively evaluated the indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and leaf injury in 17 field experiments performed in 2008. The redox state was explained by the combined effects of chronic levels of O₃ and meteorological variables 4–6 days prior to the plant sampling. Moderate leaf injury was observed in most cases. The redox state of tobacco decreases few days after their placement in the sub-tropical environment, causing them to become susceptible to oxidative stress imposed by chronic doses of O₃. Its bioindicator efficiency would not be diminished in such levels of atmospheric contamination.
显示更多 [+] 显示较少 [-]Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment
2011
Ramos-Gómez, Julia | Coz, Alberto | Viguri, Javier R. | Luque, Ángel | Martín-Díaz, M Laura | DelValls, T Ángel
Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase –EROD–, dibenzylfluorescein dealkylase –DBF–, glutathione S-transferase –GST), antioxidant enzymes (glutathione reductase –GR– and glutathione peroxidase –GPX), lipid peroxidation –LPO– and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cádiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cádiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment.
显示更多 [+] 显示较少 [-]Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: Bioaccumulation, biotransformation and biological responses
2009
Ventura-Lima, Juliane | Fattorini, Daniele | Regoli, Francesco | Monserrat, José M.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism. Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.
显示更多 [+] 显示较少 [-]Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.)
2014
Anjum, Naser A. | Srikanth, Koigoora | Mohmood, Iram | Sayeed, Iqbal | Trindade, Tito | Duarte, Armando C. | Pereira, Eduarda | Aḥmad, Iqbāl
This in vitro study investigates the impact of silica-coated magnetite particles (Fe₃O₄@SiO₂/SiDTC, hereafter called IONP; 2.5 mg L⁻¹) and its interference with co-exposure to persistent contaminant (mercury, Hg; 50 μg L⁻¹) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfo-transferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposure-dependent IONP alone and IONP + Hg joint exposure-accrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a fine-tuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully.
显示更多 [+] 显示较少 [-]Establishing the redox potential of Tibouchina pulchra (Cham.) Cogn., a native tree species from the Atlantic Rain Forest, in the vicinity of an oil refinery in SE Brazil
2014
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.
显示更多 [+] 显示较少 [-]5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape
2013
Baṣārat Alī, Es. | Huang, C. R. | Qi, Z. Y. | Ali, Shafaqat | Daud, M. K. | Geng, X. X. | Liu, H. B. | Zhou, W. J.
Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round in shape and contained thylakoids membranes and grana, but starch grains were not found in chloroplast comparatively to other treatments. On the basis of our results, we can conclude that ALA has a promotive effect which could improve plant survival under Cd stress.
显示更多 [+] 显示较少 [-]