细化搜索
结果 1-10 的 50
Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards
2022
Yusuf, Ahmed | Sodiq, Ahmed | Giwa, Adewale | Eke, Joyner | Pikuda, Oluwadamilola | Eniola, Jamiu O. | Ajiwokewu, Bilkis | Sambudi, Nonni Soraya | Bilad, Muhammad Roil
The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
显示更多 [+] 显示较少 [-]Recycling of silicon from silicon cutting waste by Al-Si alloying in cryolite media and its mechanism analysis
2020
Wei, Donghui | Kong, Jian | Gao, Shuaibo | Zhou, Shibo | Jin, Xing | Jiang, Shengnan | Zhuang, Yanxin | Du, Xinghong | Xing, Pengfei
More than 40% of the crystalline silicon has been wasted as silicon cutting waste (SCW) during the wafer production process. This waste not only leads to resource wastage but also causes environmental burden. In this paper, SCW produced by the diamond-wire sawing process was recycled by Al-Si alloying process. Cryolite was introduced to the reaction system to dissolve the SiO₂ layer existed on the surface of the Si particles in SCW. Alloys with 12.02 wt% of Si were prepared and the mechanism of the alloying process was investigated in detail. The Si-Al-cryolite system and SiO₂-Al-cryolite system were studied individually to analyze the reaction process and transferring behavior of Si and SiO₂ in SCW. The SiO₂ shell was firstly transformed into Si-O-F ions. Then the Si-O-F ions diffused to the reaction interface by the effect of the concentration gradient and were reduced to Si by the aluminothermic reduction reaction: 4Al (l) + 3SiO₂ (dissolved in the melt) = 3Si (Al)+ 2Al₂O₃ (dissolved in the melt). Then the internal Si particles were released into cryolite after the dissolution of SiO₂ and transferred to the reaction interface by the effect of gravity. The influences of the mass ratio of Al/SCW and agitation modes on the Si content of the alloys and the Si recovery ratio in SCW were investigated. With the increase of the mass ratio of Al/SCW from 2.2 to 6.5, the Si recovery ratio in SCW increased from 44.08% to 69.05%, but the silicon content of the alloys decreased from 16.06 wt% to 8.83 wt%. Agitation can effectively improve the smelting effect during smelting by which the silicon content of the alloys and the Si recovery ratio in SCW increased from 12.02 wt% and 64.25% to 13.17 wt% and 69.46%, respectively.
显示更多 [+] 显示较少 [-]Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern China
2012
Zhang, Qiang | Rodríguez-Lado, Luis | Johnson, C Annette | Xue, Hanbin | Shi, Jianbo | Zheng, Quanmei | Sun, Guifan
Shanxi Province is one of the regions in northern China where endemic arsenicosis occurs. In this study, stepwise logistic regression was applied to analyze the statistical relationships of a dataset of arsenic (As) concentrations in groundwaters with some environmental explanatory parameters. Finally, a 2D spatial model showing the potential As-affected areas in this province was created. We identified topography, gravity, hydrologic parameters and remote sensing information as explanatory variables with high potential to predict high As risk areas. The model identifies correctly the already known endemic areas of arsenism. We estimate that the area at risk exceeding 10μgL⁻¹ As occupies approximately 8100km² in 30 counties in the province.
显示更多 [+] 显示较少 [-]Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal)
2020
Yukioka, Satoru | Tanaka, Shuhei | Nabetani, Yoshiki | Suzuki, Yuji | Ushijima, Taishi | Fujii, Shigeo | Takada, Hideshige | Van Tran, Quang | Singh, Sangeeta
Microplastics (MPs, plastics < 5 mm) are a growing concern in ecosystems, being found in the soil and water environment. One of the primary sources of MPs has been suspected to be road dust in urban areas as it can flow into waters with runoff. To understand the occurrence of MPs (100 μm–5 mm) in surface road dust of three cities (Kusatsu, Shiga, Japan; Da Nang, Vietnam; and Kathmandu, Nepal), we collected surface road dust samples. The samples were pretreated (organic matter decomposition and gravity separation), and all MP candidates were individually observed by microscope for color, shape, and size; and analyzed their polymer types using fourier transform infrared spectrometry. The abundances of MPs 100 μm to 5 mm in size were 2.0 ± 1.6 pieces/m2 (13 polymer types) in Kusatsu, 19.7 ± 13.7 pieces/m2 in Da Nang (14 types), and 12.5 ± 10.1 pieces/m2 in Kathmandu (15 types). We classified the MPs into two groups; containers/packaging-MPs and rubber-MPs. Among all MPs, the containers/packaging-MPs accounted for 55 ± 5% of the polymer types composition. In contrast, the rubber-MPs accounted for 16 ± 6% of all MPs which were higher than those previously published for environmental water and sediment samples. The containers/packaging-MPs were fragments of various colors while most of the rubber-MPs were fragments or granules in black. The number–size distributions of MPs showed that the mode of formation explains the differences between their polymer types (tearing for containers/packaging-MPs and abrasion for rubber-MPs). In Da Nang and Kathmandu, the abundance of containers/packaging-MPs and rubber-MPs were correlated so that those MPs might be micronized from the originated materials in the sources with the similar composition (e.g. dump points). It was indicated that the characteristics of MPs pollution in surface road dust might be different depending on waste management practices.
显示更多 [+] 显示较少 [-]Mobility of traffic-related Pd and Pt species in soils evaluated by sequential extraction
2018
Leopold, Kerstin | Denzel, Aline | Gruber, Andreas | Malle, Lisa
The aim of this study was to evaluate the mobility of platinum (Pt) and palladium (Pd) emissions from automotive catalysts in soils and to contribute to the risk assessment of platinum group metals (PGMs) discharged from catalysts in the environment. To address this question, for the first time risk assessment code (RAC) was applied to consider the results from sequential extraction of different Pd and Pt species from soils. For this purpose, model soil samples were prepared spiking defined Pd or Pt species, respectively, at known concentrations. In order to mimic emitted species as well as possible transformation products of traffic-related Pd and Pt emissions in soils, coated and uncoated elemental nanoparticles (cPd/cPt NPs, Pd/Pt NPs) and ionic divalent metal species (Pd(II)/Pt(II)) were applied. All model samples were characterized in detail and the developed sequential extraction scheme was validated. RAC values ranged between 24 and 8% revealing medium to low risk. The order of mobility for the studied species was found to be Pt(II) > cPd NPs » Pd(II) > Pd NPs > Pt NPs > cPt NPs. Furthermore, migration of Pd species in gravity columns was studied confirming highest transport of cPd NPs.
显示更多 [+] 显示较少 [-]Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics
2020
Tang, Xianqiang | Li, Rui | Hinton, William | Wu, Xingyi
Pore water is a crucial storage medium and a key source of sediment phosphorus. A novel equipment based on electrokinetic geosynthetics (EKGs) was used for isolating phosphorus from eutrophic lake sediments through pore water drainage. Three mutually independent indoor group experiments (A, B, and C) were conducted to investigate the effects of voltage gradient (0.00, 0.25, and 0.50 V/cm) on pore water drainage capacity, phosphorus removal performance, sediment physicochemical properties, and phosphorus storage dynamics. The average reduction in the sediment moisture and total phosphorus content was 2.5%, 4.3%, and 4.6% and 28.15, 75.95, and 112.65 mg/kg after 6 days of treatment for A, B and C, respectively. Efficient pore water drainage through gravity and electroosmotic flow and electromigration of phosphate were the main drivers of sediment-dissolved and mobilized phosphorus separation. A high voltage gradient facilitated the migration of pore water and the phosphorus in it. The maximal effluent total phosphorous (TP) concentration was up to 27.9 times that in the initial pore water samples, and negligible effluent TP was detected when the pore water pH was less than 2.5. The TP concentration was exponentially and linearly related to the pH and electronic conductivity of the electroosmotic flow, respectively. The migration of H⁺ within the sediment matrix promoted the liberation of metals bounded to phosphorus, particularly of Ca–P and Fe–P. Pore water drainage through an EKG resulted in Ex–P separation of up to 87.50% and a 13.84 mg/kg decrease in Ca–P and 125.35 mg/kg accumulation of low mobile Fe–P in the weak acid anode zone.
显示更多 [+] 显示较少 [-]Competitive advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its implication for the green tide in the Yellow Sea
2020
Hao, Ya | Qu, Tongfei | Guan, Chen | Zhao, Xinyu | Hou, Chengzong | Tang, Xuexi | Wang, Ying
The physiological characteristics of Ulva prolifera and Blidingia sp. during two pre-bloom stages (March & May) were compared to evaluate the competitive advantage of U. prolifera on Pyropia aquaculture rafts in Subei Shoal. (1) Compared to Blidingia sp., U. prolifera had a lower growth rate, chlorophyll content, photosynthetic efficiency, and antioxidant capacity in March. (2) In May, various indicators of U. prolifera's physiological function improved significantly, while the antioxidant capacity of Blidingia sp. decreased significantly. Large lipidic globules in U. prolifera cells became scattered small lipidic globules in May, which indicated a decrease in lipid membrane peroxidation. (3) In U. prolifera, the ratio of buoyancy to gravity of per unit volume was 1.73, and the bubbles inside the thalli provided 60% of the total buoyancy. Buoyancy generated by the inflatable structure of U. prolifera allowed this species to float after being separated from the rafts.
显示更多 [+] 显示较少 [-]Modelling of oil thickness in the presence of an ice edge
2020
Nordam, Tor | Litzler, Emma | Skancke, Jørgen | Singsaas, Ivar | Leirvik, Frode | Johansen, Øistein
Oil slick thickness is a key parameter for the behaviour of oil spilled at sea. It influences evaporation and entrainment, viable response options, and the risk to marine life at the surface. Determining this value is therefore of high relevance in oil spill modelling. In open water, oil can spread as thin films due to gravity alone, and may be further dispersed by horizontal diffusion and differential advection. In the presence of ice, however, a thin oil slick may become concentrated to higher thickness, if compressed against the ice edge.In the present study, we develop a simple model for the thickness of oil forced against a barrier by a current. We compare our theory to flume experiments, and obtain reasonable agreement. We describe an implementation in a Lagrangian oil spill model, and present some examples. We discuss the operational applicability, and suggest further research needs.
显示更多 [+] 显示较少 [-]Spreading of waxy oils on calm water
2018
Brönner, Ute | Johansen, Øistein | Leirvik, Frode | Nordam, Tor | Sørheim, Kristin R.
The objective of this paper is to provide a simple extension of the much-used gravity spreading model for oil on calm water to account for the spreading behavior of waxy crude oils in cold waters – including the observed retardation and eventual termination of spreading at certain oil film thicknesses. This peculiar behavior is not predicted by traditional spreading models for oil on calm water (i.e. viscous-gravity spreading models), but may occur due to non-Newtonian oil properties caused by precipitation of wax at low temperatures. To clarify the spreading behavior of such oils, SINTEF has conducted a series of laboratory experiments with a range of waxy oil mixtures. The present paper contains analyses of data from these experiments, including favorable comparisons with calculations by a proposed improved surface spreading model.
显示更多 [+] 显示较少 [-]Microplastics in Galway Bay: A comparison of sampling and separation methods
2018
Pagter, Elena | Frias, João | Nash, Róisín
Microplastics, an emerging pollutant, are recognised as having a ubiquitous distribution in the environment. Currently several benthic sampling tools are being employed to collect subtidal marine sediment, however, there are no comparative studies on the efficiency of these tools to sample for microplastics or the subsequent extraction methods of microplastics from these marine sediments. This study addresses these knowledge gaps by comparing commonly applied benthic sampling tools (Van Veen grab, box corer, gravity corer) and a variety of density separation methods (elutriation column, sodium chloride solution, sodium tungstate dihydrate solution) for microplastic collection and processing.Each sampling tool was tested at the same station and the collected sediment was used to assess the extraction performance for the different density separation techniques. No statistically significant differences were found between the concentrations of microplastics extracted for any of the sampling tools. However, there were significant differences between the density separation methods using sodium tungstate dihydrate and sodium chloride solution and the elutriation method. This preliminary study provides evidence that the sampling tools tested are both suitable and proficient at determining the abundance of microplastics in sediments. Sodium tungstate dihydrate proved to be a novel and feasible option for dense liquid separation of microplastics in subtidal marine sediments. These results will allow for more confidence in data quality when comparing future surveys applying different benthic sampling tools.
显示更多 [+] 显示较少 [-]