细化搜索
结果 1-10 的 49
Exogenous melatonin protects preimplantation embryo development from decabromodiphenyl ethane-induced circadian rhythm disorder and endogenous melatonin reduction
2022
Shi, Feifei | Qiu, Jinyu | Zhang, Shaozhi | Zhao, Xin | Feng, Daofu | Feng, Xizeng
Decabromodiphenyl ethane (DBDPE) is a novel flame retardant that is widely used in plastics, electronic products, building materials and textiles. Our previous studies have revealed the oocyte toxicity of DBDPE, but the effect of DBDPE on preimplantation embryo development has not been reported. Here, we investigated whether and how DBDPE exposure affects preimplantation embryo development. Adult female mice were orally exposed to DBDPE (0, 5, 50, 500 μg/kg bw/day) for 14 days. First, we found that after DBDPE exposure, mice showed obvious circadian rhythm disorder. Moreover, the development of preimplantation embryos was inhibited in DBDPE-exposed mice after pregnancy. Then, we further explored and revealed that DBDPE exposure reduced the endogenous melatonin (MLT) level during pregnancy, thereby inhibiting the development of preimplantation embryos. Furthermore, we discovered that exogenous MLT supplementation (15 mg/kg bw/day) rescued the inhibition of preimplantation embryo development induced by DBDPE, and a mechanistic study demonstrated that exogenous MLT inhibited the overexpression of ROS and DNA methylation at the 5-position of cytosine (5-mC) in DBDPE-exposed preimplantation embryos. Simultaneously, MLT ameliorated the DBDPE-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential (MMP), ATP, and Trp1 expression. Additionally, MLT restored DBDPE-induced changes in zona pellucida (ZP) hardness and trophectoderm (TE) cortical tension. Finally, the protective effect of MLT on embryos ameliorated the adverse reproductive outcomes (dead fetus, fetus with abnormal liver, fetal weight loss) induced by DBDPE. Collectively, DBDPE induced preimplantation embryo damage leading to adverse reproductive outcomes, and MLT has emerged as a potential tool to rescue adverse reproductive outcomes induced by DBDPE.
显示更多 [+] 显示较少 [-]Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water
2021
Po, Beverly H.K. | Wood, Chris M.
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na₂SO₄, KCl, K₂SO₄, CaCl₂, CaSO₄, MgCl₂, MgSO₄, NaHCO₃, KHCO₃) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO₃/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO₃⁻ salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na⁺ and K⁺ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
显示更多 [+] 显示较少 [-]Selective accumulation of plastic debris at the breaking wave area of coastal waters
2019
Ho, Ngai Hei Ernest | Not, Christelle
Over the last decades, plastic debris has been identified and quantified in the marine environment. Coastal and riverine input have been recognized as sources of plastic debris, whereas oceanic gyres and sediments are understood to be sinks. However, we have a limited understanding of the fate of plastic debris in the nearshore environment. To investigate the movement and distribution of plastic debris in the nearshore environment, we collected samples at three distinct locations: below the high tide line, the turbulent zone created by the combination of breaking wave and backflush (defined as the boundary), and the outer nearshore. We estimated the abundance and physical characteristics (e.g. density, hardness, etc.) of macroplastic and microplastics. Four times and 15 times more macroplastics and microplastics are observed, respectively, at the boundary than in the outer nearshore waters, which suggests an accumulation driven by the physical properties of the plastic particles such as density, buoyancy and surface area. We further report that highly energetic conditions characteristic of the boundary area promote the long-term suspension and/or degradation of low density, highly buoyant or large surface area plastic debris, leading to their preferential accumulation at the boundary. Contrastingly, denser and low surface area plastic pieces were transported to the outer nearshore. These results emphasize the role of selective plastic movement at the nearshore driven by physical properties, but also by the combined effects of several hydrodynamics forces like wave action, wind or tide in the resuspension, as well as degradation and transport of plastic debris out of the nearshore environment.
显示更多 [+] 显示较少 [-]The response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systems
2018
Milošević, Djuradj | Stojanović, Katarina | Djurdjević, Aca | Marković, Zoran | Stojković Piperac, Milica | Živić, Miroslav | Živić, Ivana
The lotic habitats affected by trout farm waste are colonized with a particular invertebrate community of which chironomids are the most abundant group. However, there is little information available regarding how chironomid community structures respond to this type of pollution at the highest taxonomic resolution. Eight fish farms, together with their lotic systems as recipients, were used to test the variability of the chironomid community and its surrogates (taxonomic and functional metrics) across spatially arranged sampling sites to form a gradual decrease in the trout farm influence. The self organizing map (SOM) classified six different types of chironomid communities which were characteristic for both the control and affected habitats. The species indicator analyses listed 32 taxa as positive indicators of water pollution. The SOM and Kruskal-Wallis test revealed that the pattern of chironomid community structure obtained was mainly driven by six environmental parameters (Altitude, conductivity, distance from the outlet, hardness, HN₄-N, NO₃-N). Categorical principal components analysis (CATPCA) derived three models for each type of biotic metric, in which for diversity-, taxonomy- and functional feeding group-based metrics, the first two dimensions explained 55.2%, 58.3% and 55.4%, of the total variance respectively for 315 sampling sites. According to this analysis, the total number of taxa (S), abundance and the Shannon-Wiener index (H′) (as a diversity metric), as well as the proportion of Tanypodinae (as taxonomic group) and grazers/scraper (GRA) and gatherer collector (GAT)(as FFG metrics), were related to the outlet distance gradient, thus showing great potential to be used in the multimetric approach in bioassessment.
显示更多 [+] 显示较少 [-]Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii – Bioavailability of small organic complexes and role of hardness ions
2018
Yang, Guang | Wilkinson, Kevin J.
A green alga, Chlamydomonas reinhardtii, was used to verify whether a simple Biotic Ligand Model (BLM) could be used to predict carefully controlled short-term biouptake for the lanthanide, Nd. In the absence of ligands or competitors, Nd biouptake was well described by a Michaelis-Menten equation with an affinity constant, KNd, of 10⁶.⁸ M⁻¹ and a maximum internalization flux of Jₘₐₓ = 1.70 × 10⁻¹⁴ mol cm⁻² s⁻¹. For bi-metal mixtures containing Nd and Ca, Mg, Sm or Eu, Nd uptake could also be well modelled by assigning experimentally determined affinity constants of KCₐ = 10².⁶ M⁻¹, KMg = 10³.⁴ M⁻¹, KSₘ = 10⁶.⁵ M⁻¹ and KEᵤ = 10⁶.⁵ M⁻¹. The similar values of Kₘ and Jₘₐₓ for the three rare earth elements (REEs): Sm, Eu and Nd is consistent with them sharing a common metal uptake site. On the other hand, in the presence of the small organic ligands (citric or malic acid), neither, free or total Nd concentrations could be used to quantitatively predict Nd internalization fluxes. In other words, in order to predict biouptake by simple BLM determinations, it was necessary to consider that the Nd complexes were bioavailable. The data strongly suggest that risk evaluations of the REE will require a new paradigm and new tools for evaluating bioavailability.
显示更多 [+] 显示较少 [-]Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model
2014
Mu, Yunsong | Wu, Fengchang | Chen, Cheng | Liu, Yuedan | Zhao, Xiaoli | Haiqing Liao, | Giesy, John P.
Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids.
显示更多 [+] 显示较少 [-]Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster
2019
Meng, Yuan | Guo, Zhenbin | Yao, Haimin | Yeung, Kelvin W.K. | Thiyagarajan, V.
Ocean acidification (OA) is well-known for impairing marine calcification; however, the end response of several essential species to this perturbation remains unknown. Decreased pH and saturation levels (Ω) of minerals under OA is projected to alter shell crystallography and thus to reduce shell mechanical properties. This study examined this hypothesis using a commercially important estuarine oyster Magallana hongkongensis. Although shell damage occurred on the outmost prismatic layer and the undying myostracum at decreased pH 7.6 and 7.3, the major foliated layer was relatively unharmed. Oysters maintained their shell hardness and stiffness through altered crystal unit orientation under pH 7.6 conditions. However, under the undersaturated conditions (ΩCal ~ 0.8) at pH 7.3, the realigned crystal units in foliated layer ultimately resulted in less stiff shells which indicated although estuarine oysters are mechanically resistant to unfavorable calcification conditions, extremely low pH condition is still a threat to this essential species.
显示更多 [+] 显示较少 [-]Microtopographical modification by a herbivore facilitates the growth of a coastal saltmarsh plant
2019
Qiu, Dongdong | Yan, Jiaguo | Ma, Xu | Luo, Meng | Wang, Qing | Cui, Baoshan
Increasing evidence shows that herbivores can facilitate plant growth and maintain the resistance of plant communities to trophic consumption in a variety of ecosystems. However, the positive effects of herbivores on annual saltmarsh plants in coastal ecosystems are relatively understudied. In this study, field investigations and manipulative experiments were conducted to explore whether and how microtopographical modification by the herbivorous crab Helice tientsinensis stimulates the growth of the saltmarsh plant Suaeda salsa. Results showed that, despite grazing on S. salsa, H. tientsinensis can promote density, total biomass, average plant height, average root length, and average biomass through burrowing-generated concave-convex microtopography, which can improve the edaphic environment (decreased soil hardness and salinity, and increased soil moisture content, oxidation-reduction potential, and carbon and nitrogen content), and provide plants more clustered growth opportunities that could facilitate positive intraspecific plant interactions. This study can provide scientific guidance for ecosystem restoration in coastal intertidal saltmarshes.
显示更多 [+] 显示较少 [-]Aerobic denitrification and biomineralization by a novel heterotrophic bacterium, Acinetobacter sp. H36
2017
Su, Jun feng | Shi, Jing xin | Ma, Fang
A novel aerobic denitrification and biomineralization strain H36 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain H36 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Results showed the strain H36 had the capability to completely reduce 96.29% of NO3−–N and 78.59% of Ca2+ over 112h under aerobic condition. Response surface methodology (RSM) analysis demonstrated the highest removal ratio of Ca2+ was 74.24% with hardness concentration of 350mg/L, pH of 8.5, organic concentration of 0.75g/L and inoculum size of 15%. The highest removal ratio of nitrate was 77.00% with hardness concentration of 350mg/L, pH of 7.5, organic concentration of 0.75g/L and inoculum size of 10%. Besides, X-ray diffraction (XRD) analysis showed calcium carbonate could be formed in the process of biomineralization.
显示更多 [+] 显示较少 [-]Kinetic analysis of simultaneous denitrification and biomineralization of novel Acinetobacter sp. CN86
2016
Su, Jun-feng | Shi, Jing-xin | Huang, Ting-lin | Ma, Fang
A novel aerobic denitrification and biomineralization strain CN86 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain CN86 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Exponential decay equation was used for the matching of kinetic processes on denitrification and biomineralization. A highest nitrate removal rate was achieved at the pH7.0, organic concentration of 1.5g/L and temperature of 30°C. An optimal hardness removal rate was obtained at the pH9.0, organic concentration of 2.0g/L and temperature of 30°C. Strain CN86 is a suitable candidate for the simultaneous removal of nitrate and hardness in groundwater treatment.
显示更多 [+] 显示较少 [-]