细化搜索
结果 1-10 的 347
Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater
2022
Jayapal, Mohanapriya | Jagadeesan, Hema | Krishnasamy, Vinothkumar | Shanmugam, Gomathi | Muniyappan, Vignesh | Chidambaram, Dinesh | Krishnamurthy, Satheesh
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
显示更多 [+] 显示较少 [-]The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants
2022
Du, Jingqi | Liu, Jinxian | Jia, Tong | Chai, Baofeng
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO₃⁻-N) and water content (WC). The pH, nitrite (NO₂⁻-N), SOC, NO₃⁻-N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.
显示更多 [+] 显示较少 [-]Estimations of benchmark dose for urinary metabolites of coke oven emissions among workers
2021
Zou, Kaili | Wang, Sihua | Wang, Pengpeng | Duan, Xiaoran | Yang, Yongli | Yazdi, Mahdieh Danesh | Stowell, Jennifer | Wang, Yanbin | Yao, Wu | Wang, Wei
Coke oven emissions (COEs), usually composed of polycyclic aromatic hydrocarbons (PAHs) and so on, may alter the relative telomere length of exposed workers and have been linked with adverse health events. However, the relevant biological exposure limits of COEs exposure has not been evaluated from telomere damage. The purpose of this study is to estimate benchmark dose (BMD) of urinary PAHs metabolites from COEs exposure based on telomere damage with RTL as a biomarker. A total of 544 exposed workers and 238 controls were recruited for participation. High-performance liquid chromatography and qPCR were used to detect concentrations of urinary mono-hydroxylated PAHs and relative telomere length in peripheral blood leukocytes for all subjects. The benchmark dose approach was used to estimate benchmark dose (BMD) and its lower 95% confidence limit (BMDL) of urinary OH-PAHs of COEs exposure based on telomere damage. Our results showed that telomere length in the exposure group (0.75 (0.51, 1.08)) was shorter than that in the control group (1.05 (0.76,1.44))(P < 0.05), and a dose-response relationship was shown between telomere damage and both 1-hydroxypyrene and 3-hydroxyphenanthrene in urine. The BMDL of urinary 1-hydroxypyrene from the optimal model for telomere damage was 1.96, 0.40, and 1.01 (μmol/mol creatinine) for the total, males, and females group, respectively. For 3-hydroxyphenanthrene, the BMDL was 0.94, 0.33, and 0.49 (μmol/mol creatinine) for the total, males, and females. These results contribute to our understanding of telomere damage induced by COEs exposure and provide a reference for setting potential biological exposure limits.
显示更多 [+] 显示较少 [-]Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations
2021
Yang, Lu | Zhang, Lulu | Chen, Lijiang | Han, Chŏng | Akutagawa, Tomoko | Endo, Osamu | Yamauchi, Masahito | Neroda, Andrey | Toriba, Akira | Tang, Ning
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m⁻³; ∑NPAHs: 1.23 ± 0.96 pg m⁻³) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m⁻³; ∑NPAHs: 357 ± 180 pg m⁻³). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
显示更多 [+] 显示较少 [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation
2020
Ahad, Jason M.E. | Macdonald, Robie W. | Parrott, Joanne L. | Yang, Zeyu | Zhang, Yifeng | Siddique, Tariq | Kuznetsova, Alsu | Rauert, Cassandra | Galarneau, Elisabeth | Studabaker, William B. | Evans, Marlene | McMaster, Mark E. | Shang, Dayue
A wide variety of sampling techniques and strategies are needed to analyze polycyclic aromatic compounds (PACs) and interpret their distributions in various environmental media (i.e., air, water, snow, soils, sediments, peat and biological material). In this review, we provide a summary of commonly employed sampling methods and strategies, as well as a discussion of routine and innovative approaches used to quantify and characterize PACs in frequently targeted environmental samples, with specific examples and applications in Canadian investigations. The pros and cons of different analytical techniques, including gas chromatography – flame ionization detection (GC-FID), GC low-resolution mass spectrometry (GC-LRMS), high performance liquid chromatography (HPLC) with ultraviolet, fluorescence or MS detection, GC high-resolution MS (GC-HRMS) and compound-specific stable (δ¹³C, δ²H) and radiocarbon (Δ¹⁴C) isotope analysis are considered. Using as an example research carried out in Canada’s Athabasca oil sands region (AOSR), where alkylated polycyclic aromatic hydrocarbons and sulfur-containing dibenzothiophenes are frequently targeted, the need to move beyond the standard list of sixteen EPA priority PAHs and for adoption of an AOSR bitumen PAC reference standard are highlighted.
显示更多 [+] 显示较少 [-]Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride
2020
Liu, Haiyang | Qu, Jiao | Zhang, Tingting | Ren, Miao | Zhang, Zhaocheng | Cheng, Fangyuan | He, Dongyang | Zhang, Ya-nan
The removal of antibiotics has attracted much attention due to their extremely high adverse impacts on the environment. However, the potential risks of degradation intermediates are seldom reported. In this work, the influence of different factors on the electro-catalytic degradation efficiency of tetracycline hydrochloride (TCH) by the prepared carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode was investigated. Under optimal conditions (10 wt% CNTs dosage, pH = 7), the maximum degradation efficiency for TCH (10 mg L⁻¹) reached up to 96% within 30 min treatment with 4 V potential. Superoxide anions (•O₂⁻) played an important role in the electro-catalytic degradation. Totally 10 degradation intermediates were identified using HPLC-MS/MS, and the degradation pathway was proposed. Toxicities of the parent antibiotic and the identified intermediates were calculated using the ECOSAR (Ecological Structure Activity Relationship) program in EPISuite, and results showed that more toxic intermediates were generated. The maximal chronic toxicity for green algae of the intermediate increased 1439.92 times. Furthermore, antimicrobial activity was further verified by disk agar biocidal tests with Escherichia coli ATCC25922 and higher biotoxicity intermediates compared with parent compounds were confirmed to be formed. Therefore, more attention should be paid on the potential risk of degradation intermediates in the treatment of wastewater containing antibiotics.
显示更多 [+] 显示较少 [-]Membrane Enhanced Bioaccessibility Extraction (MEBE) of hydrophobic soil pollutants – Using a semipermeable membrane for separating desorption medium and acceptor solvent
2020
Cocovi-Solberg, David J. | Kellner, Astrid | Schmidt, Stine N. | Loibner, Andreas P. | Miró, Manuel | Mayer, Philipp
Bioaccessibility extractions are increasingly applied to measure the fraction of pollutants in soil, sediment and biochar, which can be released under environmentally or physiologically relevant conditions. However, the bioaccessibility of hydrophobic organic chemicals (HOCs) can be markedly underestimated when the sink capacity of the extraction medium is insufficient. Here, a novel method called “Membrane Enhanced Bioaccessibility Extraction” (MEBE) applies a semipermeable membrane to physically separate an aqueous desorption medium that sets the desorption conditions from an organic medium that serves as acceptor phase and infinite sink. The specific MEBE method combines HOC (1) desorption into a 2-hydroxypropyl-β-cyclodextrin solution, (2) transfer through a low-density polyethylene (LDPE) membrane and (3) release into ethanol, serving as analytical acceptor phase. The surface to volume ratio within the LDPE membrane is maximized for rapid depletion of desorbed molecules, and the capacity ratio between the acceptor phase and the environmental sample is maximized to achieve infinite sink conditions. Several experiments were conducted for developing, optimizing and pre-testing the method, which was then applied to four soils polluted with polycyclic aromatic hydrocarbons. MEBE minimized sample preparation and yielded a solvent extract readily analyzable by HPLC. This study focused on the proof-of-principle testing of the MEBE concept, which now can be extended and applied to other samples and desorption media.
显示更多 [+] 显示较少 [-]High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS
2020
Liang, Ming | Xian, Yanping | Wang, Bin | Hou, Xiangchang | Wang, Li | Guo, Xindong | Wu, Yuluan | Dong, Hao
The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01–0.08 μg/L and 0.03–0.25 μg/L, good recoveries (72.5–117.8%) and intra-day precision (1.1–11.2%, n = 6), high enrichment factors (48–78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14–0.67 μg/L.
显示更多 [+] 显示较少 [-]Extensive solar light harvesting by integrating UPCL C-dots with Sn2Ta2O7/SnO2: Highly efficient photocatalytic degradation toward amoxicillin
2020
Le, Shukun | Yang, Weishan | Chen, Gonglai | Yan, Aoyu | Wang, Xiaojing
The carbon dots (C-dots) mediated Sn₂Ta₂O₇/SnO₂ heterostructures with spongy structure were successfully assembled by simple hydrothermal route. The photocatalytic removal efficiency of amoxicillin (AMX, 20 mg L⁻¹) over C-dots/Sn₂Ta₂O₇/SnO₂ was estimated to reach up 88.3% within 120 min simulated solar light irradiating. Meanwhile, the HPLC-MS/MS analysis and density functional theory (DFT) computation were examined to clarify the photo-degradation pathway of AMX. The mechanism investigation proposed that with the modification of C-dots, the photocatalysts improves the utilization of solar energy by harvesting the long wavelength solar light due to their unique up-converted photoluminescence (UCPL). In addition, the porous spongy structure and plenty of tiny C-dots promote the ability of adsorption by enlarged specific surface area. Furthermore, the C-dots mediated Z-type heterojunction of Sn₂Ta₂O₇/SnO₂ facilitates the efficient separation and transfer of photo-induced carriers. Our work affords a promising approach for the design of the high-efficient photocatalysts to remedy poisonous antibiotics in aqueous environment.
显示更多 [+] 显示较少 [-]Hydroponic growth test of maize sprouts to evaluate As, Cd, Cr and Pb translocation from mineral fertilizer and As and Cr speciation
2020
Fioroto, Alexandre M. | Albuquerque, Luiza G.R. | Carvalho, Alexandrina A.C. | Oliveira, Aline P. | Rodrigues, Fábio | Oliveira, Pedro V.
The present study proposes a maize sprouts hydroponic growth model to evaluate the As, Cd, Cr and Pb translocation from multinutrient fertilizer and to do speciation of As and Cr in this fertilizer and As in parts of plant in order to predict their phytoavailability. X-ray absorption near edge structure (XANES) was employed to speciate As and Cr directly on fertilizer solid sample. Arsenate (Asⱽ) and a solid solution of FeCrO₃ were the major species identified in the samples. The sprouts were hydroponically cultivated in water, fertilizer slurry and fertilizer extract media. Concentrations of As, Cd and Pb measured on leaves of maize sprouts ranged from 0.061 to 0.31 mg kg⁻¹, whereas Cr was not translocated to the aerial parts of sprouts. High performance liquid chromatographic with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) analysis was used to determine As speciation in maize sprouts, as well as in the fertilizer extracts and slurries. Arsenate was the only species identified in the initial fertilizer extract and this information is in agreement with the XANES results. However, the reduction of arsenate to arsenite was observed in extracts and slurries collected after sprout growth, probably due to the action of exudates secreted by plant roots. Arsenite was the predominant species identified in sprouts, the high phosphate concentration in the medium may have contributed to reduce arsenate phytoavailability.
显示更多 [+] 显示较少 [-]