细化搜索
结果 1-10 的 36
Thioredoxin-albumin fusion protein prevents urban aerosol-induced lung injury via suppressing oxidative stress-related neutrophil extracellular trap formation
2021
Tanaka, Ken-ichiro | Kubota, Maho | Shimoda, Mikako | Hayase, Tomoko | Miyaguchi, Mamika | Kobayashi, Nahoko | Ikeda, Mayumi | Ishima, Yu | Kawahara, Masahiro
The number of deaths from air pollution worldwide is estimated at 8.8 million per year, more than the number of deaths from smoking. Air pollutants, such as PM₂.₅, are known to induce respiratory and cardiovascular diseases by inducing oxidative stress. Thioredoxin (Trx) is a 12-kDa endogenous protein that exerts antioxidant activity by promoting dithiol disulfide exchange reactions. We previously synthesized human serum albumin-fused thioredoxin (HSA-Trx), which has a longer half-life in plasma compared with Trx, and demonstrated its efficacy against various diseases including respiratory diseases. Here, we examined the effect of HSA-Trx on urban aerosol-induced lung injury in mice. Urban aerosols induced lung injury and inflammatory responses in ICR mice, but intravenous administration of HSA-Trx markedly inhibited these responses. We next analyzed reactive oxygen species (ROS) production in murine lungs using an in vivo imaging system. The results show that intratracheal administration of urban aerosols induced ROS production that was inhibited by intravenously administered HSA-Trx. Finally, we found that HSA-Trx inhibited the urban aerosol-induced increase in levels of neutrophilic extracellular trap (NET) indicators (i.e., double-stranded DNA, citrullinated histone H3, and neutrophil elastase) in bronchoalveolar lavage fluid (BALF). Together, these findings suggest that HSA-Trx prevents urban aerosol-induced acute lung injury by suppressing ROS production and neutrophilic inflammation. Thus, HSA-Trx may be a potential candidate drug for preventing the onset or exacerbation of lung injury caused by air pollutants.
显示更多 [+] 显示较少 [-]Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland
2021
Feng, Sheng Jun | Liu, Xue Song | Cao, Hong Wei | Yang, Zhi Min
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
显示更多 [+] 显示较少 [-]Constant light exposure causes oocyte meiotic defects and quality deterioration in mice
2020
Zhang, Huiting | Yan, Ke | Sui, Lumin | Nie, Junyu | Cui, Kexin | Liu, Jiahao | Zhang, Hengye | Yang, Xiaogan | Lu, Kehuan | Liang, Xingwei
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m⁶A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
显示更多 [+] 显示较少 [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
显示更多 [+] 显示较少 [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
显示更多 [+] 显示较少 [-]The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone
2019
Duarte, Gustavo T. | Volkova, Polina Yu | Geras'kin, Stanislav A.
Radioactive contamination of the natural areas is one of the most long-lasting anthropogenic impacts on the environment. Scots pine (Pinus sylvestris L.) is a promising organism for radiation-related research because of its high radiosensitivity, but the genome size of Pinacea species has imposed obstacles for high-throughput studies so far. In this work, we conducted the analysis of the de novo assembled transcriptome of Scots pine populations growing in the Chernobyl-affected zone, which is still today contaminated with radionuclides because of the accident at the nuclear power plant in 1986. The transcriptome profiles indicate a clear pattern of adaptive stress response, which seems to be dose-dependent. The transcriptional response indicates a continuous modulation of the cellular redox system, enhanced expression of chaperones and histones, along with the control of ions balance. Interestingly, the activity of transposable element families is inversely correlated to the exposure levels to radiation. These adaptive responses, which are triggered by radiation doses 30 times lower than the one accepted as a safe for biota species by international regulations, suggest that the environmental management in radiation protection should be reviewed.
显示更多 [+] 显示较少 [-]Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice
2019
Wang, Chaoqun | Wei, Zhengkai | Han, Zhen | Wang, Jingjing | Zhang, Xu | Wang, Yanan | Liu, Quan | Yang, Zhengtao
Cadmium (Cd) is a ubiquitous toxic heavy metal derived mainly from industrial processes. In industrialized societies, individuals are exposed to a plethora of sources of Cd pollution. Cd can trigger serious diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) by the over-activating immune system. As an effector mechanism in innate immunity, neutrophil extracellular traps (NETs) not only play an important role in defending against infection but also lead to tissue damage. However, the role of NETs in Cd-induced lung damage process has not been previously studied. In this study, we aimed to investigate the potential effects of Cd-induced NETs on lung injury in vivo and further to clarify the molecular mechanisms of Cd-induced NETs formation. In vivo, Cd treatment destroyed the structural integrity of lung tissue and significantly increased the levels of NETs in the bronchoalveolar lavage fluid (BALF). The known NETs inhibitor DNase I ameliorated pathologic changes and significantly decreased levels of NETs in BALF, which suggesting the curial role of NETs in Cd-induced lung injury. Further investigation showed that Cd could significantly trigger NETs formation, which is composed of DNA backbone decorated with histones (H3) and neutrophils elastase (NE). The inhibitors of NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways significantly reduced the formation of NETs, and western blotting analysis also showed that Cd significantly increased the phosphorylation of p38 and ERK1/2 signaling pathways. Above results confirmed that NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways were related to Cd-induced NETs formation. In conclusion, NETs was involved in Cd-induced lung injury, and the mechanisms of Cd-induced NETs formation was via activating NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways, which might provide a new perspective in Cd-induced lung injury.
显示更多 [+] 显示较少 [-]Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene
2018
Li, Jie | Xing, Xiumei | Zhang, Xinjie | Liang, Boxuan | He, Zhini | Gao, Chen | Wang, Shan | Wang, Fangping | Zhang, Haiyan | Zeng, Shan | Fan, Junling | Chen, Liping | Zhang, Zhengbao | Zhang, Bo | Liu, Caixia | Wang, Qing | Lin, Weiwei | Dong, Guanghui | Tang, Huanwen | Chen, Wen | Xiao, Yongmei | Li, Daochuan
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = −0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure.
显示更多 [+] 显示较少 [-]Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5
2017
Leclercq, B. | Platel, A. | Antherieu, S. | Alleman, L.Y. | Hardy, E.M. | Perdrix, E. | Grova, N. | Riffault, V. | Appenzeller, B.M. | Happillon, M. | Nesslany, F. | Coddeville, P. | Lo-Guidice, J-M. | Garçon, G.
Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our findings supported that, together with genetic events, these epigenetic events could dramatically contribute to the shift from healthy to diseased phenotypes following repeated exposure to relatively low doses of air pollution-derived PM2.5.
显示更多 [+] 显示较少 [-]Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4
2016
Leclercq, B. | Happillon, M. | Antherieu, S. | Hardy, E.M. | Alleman, L.Y. | Grova, N. | Perdrix, E. | Appenzeller, B.M. | Lo Guidice, J.-M. | Coddeville, P. | Garçon, G.
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
显示更多 [+] 显示较少 [-]