细化搜索
结果 1-10 的 54
Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies
2021
Martínez-Ibarra, A. | Martínez-Razo, L.D. | MacDonald-Ramos, K. | Morales-Pacheco, M. | Vázquez-Martínez, E.R. | López-López, M. | Rodríguez Dorantes, M. | Cerbón, M.
A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer.In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.
显示更多 [+] 显示较少 [-]Testosterone amendment alters metabolite profiles of the soil microbial community
2021
Steroid hormones are prevalent in the environment and have become emerging pollutants, but little is known about their effects on soil microbial community composition and function. In the present study, three representative soils in China were amended with environmentally relevant concentrations of testosterone and responses of soil bacterial community composition and soil function were assessed using high-throughput sequencing and nontargeted metabolomics. Our results showed that testosterone exposure significantly shifted bacterial community structure and metabolic profiles in soils at Ningbo (NB) and Kunming (KM), which may reflect high bioavailability of the hormone. Abundances of several bacterial taxa associated with nutrient cycling were reduced by testosterone and metabolites related to amino acid metabolism were downregulated. A close connection between bacterial taxa and specific metabolites was observed and confirmed by Procrustes tests and a co-occurrence network. These results provide an insight into the effects of steroid hormones on soil microbial community and highlight that nontargeted metabolomics is an effective tool for investigating the impacts of pollutants.
显示更多 [+] 显示较少 [-]Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches
2019
Batra, Twinkle | Malik, Indu | Kumar, Vinod
Light at night (LAN) negatively impacts the behaviour and physiology; however, very little is known about molecular correlates of LAN-induced effects in diurnal animals. Here, we assessed LAN-induced effects on behaviour and physiology, and examined molecular changes in the liver of diurnal zebra finches (Taeniopygia guttata). Birds were exposed to dim LAN (dLAN: 12L = 150 lux: 12D = 5 lux), with controls on 12L (150 lux): 12D (0 lux). dLAN altered daily activity-rest and eating patterns, induced nocturnal eating and caused body fattening and weight gain, and reduced nocturnal melatonin levels. Concomitant increased nighttime glucose levels, decreased daytime thyroxine and triglycerides levels, and hepatic lipid accumulation suggested the impairment of metabolism under dLAN. Transcriptional assays evidenced dLAN-induced negative effects on metabolism in the liver, the site of metabolic homeostasis. Particularly, increased g6pc and foxo1 mRNA expressions suggested an enhanced gluconeogenesis, while increased egr1 and star expressions suggested enhanced cholesterol biosynthesis and lipid metabolism, respectively. Similarly, overexpressed sirt1 indicated protection from the metabolic damage due to elevated gluconeogenesis and cholesterol biosynthesis under dLAN. However, no effect on genes involved in lipogenesis (fasn) and insulin signalling pathway (socs3 and insig1) might indicate for the post transcriptional/post translational modification effects or the involvement of other genetic pathways in LAN-induced effects. We also found daily rhythm in the hepatic expression of selected clock and clock-controlled genes (per2, bmal1 and reverb-beta), with an elevated mesor and amplitude of per2 oscillation, suggesting a role of per2 in the liver metabolism. These results demonstrate dLAN-induced negative effects on the behaviour and physiology, and provide molecular insights into metabolic risks of the exposure to illuminated nights to diurnal animals including humans in an urban setting.
显示更多 [+] 显示较少 [-]Effects of elevated O3 on physiological and biochemical responses in three kinds of trees native to subtropical forest in China during non-growing period
2018
Yu, Hao | Cao, Jixin | Chen, Zhan | Shang, He
Numerous studies have documented the negative effects of ozone (O₃) on tree species in growing season, however, little is done in non-growing season. Three evergreen tree species, Phoebe bournei (Hemsl.) Yang (P. bournei), Machilus pauhoi Kanehira (M. pauhoi) and Taxus chinensis (Pilger) Rehd (T. chinensis), were exposed to non-filtered air, 100 nmol mol⁻¹ O₃ air (E1) and 150 nmol mol⁻¹ O₃ air (E2) in open-top chambers in subtropical China. In the entire period of experiment, O₃ fumigation decreased net photosynthesis rate (Pn) through stomatal limitation during the transition period from growing to non-growing season (TGN), and through non-stomatal limitation during the period of non-growing season (NGS) in all species tested. Meanwhile, O₃ fumigation reduced and delayed the resilience of Pn in all species tested during the transition period from non-growing to growing season (TNG). O₃ fumigation significantly decreased chlorophyll contents during NGS, whereas no obvious injury symptoms were observed till the end of experiment. O₃ fumigation induced increases in levels of malondialdehyde, superoxide dismutase, total phenolics and reduced ascorbic acid, and changes in four plant endogenous hormones as well in all species tested during NGS. During NGS, E1 and E2 reduced Pn by an average of 80.11% in P. bournei, 94.56% in M. pauhoi and 12.57% in T. chinensis, indicating that the O₃ sensitivity was in an order of M. pauhoi > P. bournei > T. chinensis. Overall, O₃ fumigation inhibited carbon fixation in all species tested during NGS. Furthermore, O₃-induced physiological activities also consumed the dry matter. All these suggested that elevated O₃, which is likely to come true during NGS in the future, will adversely affect the accumulation of dry matter and the resilience of Pn during TNG in evergreen tree species, and further inhibit their growth and development in the upcoming growing season.
显示更多 [+] 显示较少 [-]Novel pollutants in the Moscow atmosphere in winter period: Gas chromatography-high resolution time-of-flight mass spectrometry study
2017
Mazur, D.M. | Polyakova, O.V. | Artaev, V.B. | Lebedev, A.T.
The most common mass spectrometry approach analyzing contamination of the environment deals with targeted analysis, i.e. detection and quantification of the selected (priority) pollutants. However non-targeted analysis is becoming more often the method of choice for environmental chemists. It involves implementation of modern analytical instrumentation allowing for comprehensive detection and identification of the wide variety of compounds of the environmental interest present in the sample, such as pharmaceuticals and their metabolites, musks, nanomaterials, perfluorinated compounds, hormones, disinfection by-products, flame retardants, personal care products, and many others emerging contaminants. The paper presents the results of detection and identification of previously unreported organic compounds in snow samples collected in Moscow in March 2016. The snow analysis allows evaluation of long-term air pollution in the winter period. Gas chromatography coupled to a high resolution time-of-flight mass spectrometer has enabled us with capability to detect and identify such novel analytes as iodinated compounds, polychlorinated anisoles and even Ni-containing organic complex, which are unexpected in environmental samples. Some considerations concerning the possible sources of origin of these compounds in the environment are discussed.
显示更多 [+] 显示较少 [-]Sterol ratios as a tool for sewage pollution assessment of river sediments in Serbia
2016
Matić Bujagić, Ivana | Grujić, Svetlana | Jauković, Zorica | Laušević, Mila
In this work, source pollution tracing of the sediments of the Danube River and its tributaries in Serbia was performed using sterol ratios. Improved liquid chromatography-tandem mass spectrometry method, which enabled complete chromatographic separation of four analytes with identical fragmentation reactions (epicoprostanol, coprostanol, epicholestanol and cholestanol), was applied for the determination of steroid compounds (hormones, human/animal and plant sterols). A widespread occurrence of sterols was identified in all analyzed samples, whereas the only detected hormones were mestranol and 17α-estradiol. A human-sourced sewage marker coprostanol was detected at the highest concentration (up to 1939 ng g−1). The ratios between the key sterol biomarkers, as well as the percentage of coprostanol relative to the total sterol amount, were applied with the aim of selecting the most reliable for distinction between human-sourced pollution and the sterols originated from the natural sources in river sediments. The coprostanol/(cholesterol + cholestanol) and coprostanol/epicoprostanol ratios do not distinguish between human and natural sources of sterols in the river sediments in Serbia. The most reliable sterol ratios for the sewage pollution assessment of river sediments in the studied area were found to be coprostanol/(coprostanol + cholestanol), coprostanol/cholesterol and epicoprostanol/coprostanol. For the majority of sediments, human-derived pollution was determined. Two sediment samples were identified as influenced by a combination of human and natural biogenic sources.
显示更多 [+] 显示较少 [-]Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption
2011
Vulliet, Emmanuelle | Cren-Olivé, Cécile
As part of a regional screening to evaluate the risk, for the health of populations, to certain classes of emerging substances, several families of pharmaceuticals and hormones were looked for in waters intended to drinking. Thus, 52 substances were investigated in 71 surface waters and 70 groundwaters. Results indicate that no water was free of pollutants, regardless of its origin (surface or groundwater) and the season of collect. The pharmaceuticals most frequently detected and with the highest concentration levels were salicylic acid, carbamazepine and acetaminophen. Among hormones, testosterone, androstenedione and progesterone were detected in almost all the samples. Globally the groundwaters were less contaminated than surface waters in regards pharmaceuticals frequencies and levels. On the other side, androgens and progestagens were present with comparable frequencies and levels in both compartments. The risk linked to the presence of these substances on human health is discussed.
显示更多 [+] 显示较少 [-]High throughput screening of photocatalytic conversion of pharmaceutical contaminants in water
2017
Romão, Joana | Barata, David | Ribeiro, Nelson | Habibovic, Pamela | Fernandes, Hugo | Mul, Guido
The susceptibility for photon-induced degradation of over 800 pharmaceutical compounds present in the LOPAC1280 library, was analyzed by UV/Vis spectroscopy in the absence or presence of TiO2 P25 in water. In general, few compounds were effectively degraded in the absence of the TiO2 photocatalyst (3% of all compounds tested), while in the presence of TiO2, the majority of compounds was converted, often to a large degree. Differences in degree of degradation are evaluated on the basis of molecular weight, as well as the chemical nature of the drug compounds (functional groups and pharmacological classes). In general, if the molecular weight increases, the degradation efficacy decreases. Relatively high degrees of conversion can be achieved for (relatively small) molecules with functional groups such as aldehydes, alcohols, ketones and nitriles. A low degree of conversion was observed for compounds composed of conjugated aromatic systems. Trends in degradation efficacy on the basis of pharmacological class, e.g. comparing hormones and opioids, are not obvious.
显示更多 [+] 显示较少 [-]Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead
2017
Chen, Lianguo | Wang, Xianfeng | Zhang, Xiaohua | Lam, Paul K.S. | Guo, Yongyong | Lam, James C.W. | Zhou, Bingsheng
Polybrominated diphenyl ethers (PBDEs) and heavy metals are two key groups of electric and electronic equipment contaminants. Despite their co-occurrence in aquatic environments, their combined effects remain largely unknown, particularly under a chronic exposure regime. In the present study, adult zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of BDE-209 and lead (Pb), or their binary mixtures, for 3 months. After chronic parental exposure, increased transfer of BDE-209 and Pb to the offspring eggs was activated in the coexposure groups, with BDE-197 being the predominant PBDE congener, indicating the dynamic metabolism of BDE-209 in parental zebrafish. In the presence of Pb, culturing the eggs in clean water until 5 days post-fertilization (dpf) further accelerated the debromination of BDE-209 towards BDE-197 in the offspring, caused by the preferential removal of bromine atoms at meta positions. BDE-209 and Pb combinations induced reproductive and thyroid endocrine disruption in adults, which resulted in an imbalanced deposition of hormones in the eggs. However, compared with single chemical exposure, the larval offspring at 5 dpf from the coexposure groups had reversed the adverse influences from maternal origin. In addition, the interaction between BDE-209 and Pb led to transgenerational developmental neurotoxicity in the larval offspring, where inhibited neuronal growth and neurotransmitter signaling, disorganized muscular assembly, and impaired visual function contributed to the observed neurobehavioral deficits. Overall, depending on specific biological events, the complex interaction between BDE-209 and Pb under chronic exposure resulted in significant alterations in their environmental fate and toxicological actions, thus complicating the accurate evaluation of ecological risks and constituting an unquantified threat to environmental safety.
显示更多 [+] 显示较少 [-]Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: A cross-sectional study in China
2016
Wang, Yi-Xin | Zeng, Qiang | Sun, Yang | Yang, Pan | Wang, Peng | Li, Jin | Huang, Zhen | You, Ling | Huang, Yue-Hui | Wang, Cheng | Li, Yu-Feng | Lu, Wen-Qing
Exposure to phthalates has been found to have adverse effects on male reproductive function in animals. However, the findings from human studies are inconsistent. Here we examined the associations of phthalate exposure with semen quality and reproductive hormones in a Chinese population using phthalate metabolite concentrations measured in semen as biomarkers. Semen (n = 687) and blood samples (n = 342) were collected from the male partners of sub-fertile couples who presented to the Reproductive Center of Tongji Hospital in Wuhan, China. Semen quality parameters and serum reproductive hormone levels were determined. Semen concentrations of 8 phthalate metabolites were assessed using high-performance liquid chromatography and tandem mass spectrometry. Associations of the semen phthalate metabolites with semen quality parameters and serum reproductive hormones were assessed using confounder-adjusted linear and logistic regression models. Semen phthalate metabolites were significantly associated with decreases in semen volume [mono-n-butyl phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)], sperm curvilinear velocity [monobenzyl phthalate (MBzP), MEHP, the percentage of di-(2-ethylhexyl)-phthalate metabolites excreted as MEHP (%MEHP)], and straight-line velocity (MBzP, MEHP, %MEHP), and also associated with an increased percentage of abnormal heads and tails (MBzP) (all p for trend <0.05). These associations remained suggestive or significant after adjustment for multiple testing. There were no significant associations between semen phthalate metabolites and serum reproductive hormones. Our findings suggest that environmental exposure to phthalates may impair human semen quality.
显示更多 [+] 显示较少 [-]