细化搜索
结果 1-10 的 3,620
Ecological and Health Risk Assessment of Trace Metals in Waters from North-West Zone of Akwa Ibom State, Nigeria
2023
Effiong Jonah, Udeme | Friday Mendie, Cecilia | Greogry Asuquo, Uwemmay
Metals contamination in water is becoming a threat to human health. The studies ecological and health risk assessment of trace metals was conducted in seven water bodies in Akwa Ibom State, between May 2021 and April 2022 (twelve months), to evaluate the levels of trace metals contaminant and suitability of the waters for human consumption. Six trace metals were assessed in the water samples; using atomic absorption spectrophotometer after digestion. Pollution indices such as heavy metal pollution index, comprehensive pollution index, contamination index and health risk assessment for non-carcinogenic were employed. The findings were compared with Nigerian Standard for Drinking Water Quality. The mean concentration of some metals (Pb, Cd, Cr, and Cu) in some stations were exceeded the standard limits, while Fe and Ni exceeded the acceptable limits in all the stations, due to anthropogenic activities. The values for HPI in stations I, II, IV and VII were exceeded the threshold of 100, ranging between 61.4 and 743.5; CPI ranged from 1.05 to 3.72, while Cd ranged from 0.94 to 16.3, indicated that the water bodies are highly contaminated. The CDI and HQ values for Fe, Cd, Cr and Cu exceeded the oral toxicity reference dosage of contaminant and stipulated threshold (1) for HI in some stations both in children and adult, indicated that the water bodies are not suitable for human consumption. The findings call for concern regarding their effects on human health, which could be detrimental to the people drinking from these water.
显示更多 [+] 显示较少 [-]COVID-19 Waste as Source of Microplastics in the Environment: Implication for Aquatic Species, Human, and Remediation Measures- A Review
2023
Iheanacho, Stanley | Ogbu, Miracle | Ekpeyoung, Joshua | Tabi, Elizabeth | Iheanacho, Angus | Bhuyan, Md Simul | Ogunji, Johnny
Coronavirus (COVID-19) pandemic ushered in a new era that led to the adjustments of diverse ecosystems. The pandemic restructured the global socio-economic events which prompted several adaptation measures as a response mechanism to cushion the negative impact of the disease pandemic. Critical health safety actions were imperative to curtail the spread of the disease such as wearing personal protective equipment (PPEs), masks, goggles, and using sanitizers for disinfection purposes. The daily demands for the products by individuals and medical personnel heightened their production and consumption, leading to a corresponding increase of COVID-19 wastes in the environment following indiscriminate waste disposal and poor waste management. The persistent occurrence of COVID-19 wastes aggravated microplastics (MPs) contamination in the aquatic ecosystem following the breakdown of PPEs-based plastics via oxidation, fragmentation, and photo-degradation actions. These MPs are transported in the aquatic environment via surface runoff and wind action, apart from discrete sources. MPs' presence in the aquatic systems is not without repercussions. Ingestion of MPs by aquatic organisms can cause several diseases (e.g., poor growth, oxidative distress, neurotoxicity, developmental toxicity, reproductive toxicity, immunotoxicity, and organ toxicity). Humans are at high risk of MPs uptake. Apart from aerial and soil contamination sources, consumption of aquatic food products is a critical pathway of MPs into the human body. MP toxicities in humans include liver disorder, respiratory failure, infertility, hormonal imbalance, diarrhea, developmental disorder, and mortality. Measures to alleviate the effect of COVID-19 waste litters include effective waste management plans and the adoption of technologies to extract cum degrade MPs from the aquatic and terrestrial environment.
显示更多 [+] 显示较少 [-]Ecosystem services valuation: a review of concepts, systems, new issues, and considerations about pollution in ecosystem services.
2023
Zandebasiri, Mehdi | Jahanbazi Goujani, Hassan | Iranmanesh, Yaghoub | Azadi, Hossein | Viira, Ants-Hannes | Habibi, Mohsen
peer reviewed | Managers can determine the function of ecosystem services in decision-making processes through valuation. Ecological functions and processes that benefit people lead to ecosystem services. Valuing ecosystem services mean finding values for the benefits of ecosystem services. For the concepts related to ecosystem services and their valuation, categories in different articles have been presented. One of the most important issues is providing a suitable grouping for different methods and concepts of valuing ecosystem services. In this study, the most recent topics related to ecosystem service valuation methods were compiled and categorized by using the system theory. The aim of this study was to introduce some of the most important classical and modern methods and concepts of valuing ecosystem services. For this aim, a review of articles related to ecosystem service valuation methods, content analysis, and categorization of their contents was used to provide definitions, concepts, and categorization of different methods. To summarize, valuation methods are classified into two types: classical and modern methods. Classical approaches include the avoided cost method, the replacement cost method, the factor income method, the travel cost method, hedonic pricing, and contingent value. Modern methods include the basic value transfer method, deliberative ecosystem service valuation, valuation of climate change risks, and other cases that evolve every day in the world of science. Findings of the paper have the potential to be beneficial in comprehending the definitions and ideas of ecosystem services in ecosystem management, particularly in protected areas, participatory management, and pollutant research. This research can add to the worldwide literature on the valuing of ecosystem services while also determining the most pressing issues and difficulties of today, such as climate change, pollution, ecosystem management, and participatory management.
显示更多 [+] 显示较少 [-]Social, economic, and technical factors affecting CO2 emissions in Iran.
2023
Ghazali, Samane | Shabani, Zahra Dehghan | Azadi, Hossein
peer reviewed | Most scholars support the increase in carbon dioxide (CO2) emissions as one of the major causes of the increase in global climate change. Therefore, reducing CO2 emissions from the main emitter countries, including Iran as the sixth emitter, is important to deal with the harmful effects of global climate change. Accordingly, the main aim of this paper was to analyze the social, economic, and technical factors affecting CO2 emissions in Iran. Previous studies on diverse variables affecting emissions are not very accurate and reliable as they do not consider indirect effects. This study applied a structural equation model (SEM) to estimate the direct and indirect impacts of factors on the emissions by panel data for 28 provinces of Iran from 2003 to 2019. According to geographical location, three distinct regions, the north, center, and south of Iran were considered. The findings suggest that a 1% increase in social factor directly increased CO2 emissions by 2.23% (in the north) and 1.58% (in the center), but indirectly reduced emissions by 0.41% (in the north) and 0.92% (in the center). Hence, the total effects of the social factor on CO2 emissions were estimated at 1.82%, and 0.66% in the northern, and central regions, respectively. In addition, the total effects of the economic factor on CO2 emissions were estimated at 1.52%, and 0.73% in those regions. The results of this study showed that the direct effects of a technical factor on CO2 emissions were negative in the north and center. However, they were positive in the south of Iran. Based on the empirical results of this study, three policy implications are discussed in order to control CO2 emissions in regional distinctions of Iran as follows: First, policymakers should pay attention to the social factor, i.e., the growth of human capital in the southern region with the aim of increasing sustainable development. Second, Iranian policymakers must prevent unilaterally increasing gross domestic product (GDP) and financial development in the north and center. Third, policymakers should pay attention to the technical factor, i.e., improving energy efficiency, as well as upgrading information and communications technology (ICT) in the northern and central regions, and limiting the technical factor in the southern region.
显示更多 [+] 显示较少 [-]Analysis of changes in air pollution quality and impact of COVID-19 on environmental health in Iran: application of interpolation models and spatial autocorrelation.
2022
Keshtkar, Mostafa | Heidari, Hamed | Moazzeni, Niloofar | Azadi, Hossein
peer reviewed | In the global COVID-19 epidemic, humans are faced with a new challenge. The concept of quarantine as a preventive measure has changed human activities in all aspects of life. This challenge has led to changes in the environment as well. The air quality index is one of the immediate concrete parameters. In this study, the actual potential of quarantine effects on the air quality index and related variables in Tehran, the capital of Iran, is assessed, where, first, the data on the pollutant reference concentration for all measuring stations in Tehran, from February 19 to April 19, from 2017 to 2020, are monitored and evaluated. This study investigated the hourly concentrations of six particulate matters (PM), including PM2.5, PM10, and air contaminants such as nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO). Changes in pollution rate during the study period can be due to reduced urban traffic, small industrial activities, and dust mites of urban and industrial origins. Although pollution has declined in most regions during the COVID-19 quarantine period, the PM2.5 rate has not decreased significantly, which might be of natural origins such as dust. Next, the air quality index for the stations is calculated, and then, the interpolation is made by evaluating the root mean square (RMS) of different models. The local and global Moran index indicates that the changes and the air quality index in the study area are clustered and have a high spatial autocorrelation. The results indicate that although the bad air quality is reduced due to quarantine, major changes are needed in urban management to provide favorable conditions. Contaminants can play a role in transmitting COVID-19 as a carrier of the virus. It is suggested that due to the rise in COVID-19 and temperature in Iran, in future studies, the effect of increased temperature on COVID-19 can be assessed.
显示更多 [+] 显示较少 [-]Multidrug-resistant enteroaggregative Escherichia coli (EAEC) enters dormant state during heat treatment: A potential hazard in municipal sludge
2022
Zhang, Bingni | Fu, Yulong | Wang, Feiyu | Yang, Jiawen | Pan, Zhiyu | Huang, Meiling | Shen, Kewei | Shen, Chaofeng
Reuse of sewage sludge is a general trend and land application is an essential way to reuse sludge. The outbreak of coronavirus disease has raised concerns about human pathogens and their serious threat to public health. The risk of pathogenic bacterial contamination from land application of municipal sludge has not been well assessed. The purpose of this study was to investigate the presence of pathogenic bacteria in municipal sewage sludge and to examine the survival potential of certain multidrug-resistant enteroaggregative Escherichia coli (EAEC) strain isolated from sewage sludge during heat treatment. The sewage sludge produced in the two wastewater treatment plants contained pathogenic bacteria such as pathogenic E. coli, Shigella flexneri, and Citrobacter freundii. The environmental strain of EAEC isolated from the sludge was resistant to eight types of antibiotics. It could also enter the dormant state after 4.5 h of treatment at 55 °C and regrow at 37 °C, while maintaining its antibiotic resistance. Our results indicate that the dormancy of EAEC might be why it is heat-resistant and could not be killed completely during the sludge heat treatment process. Owing to the regrowth of the dormant pathogenic bacteria, it is risky to apply the sludge to land even if the sludge is heat-treated, and there is also a risk of spreading antibiotic resistance.
显示更多 [+] 显示较少 [-]Macroalgae metal-biomonitoring in Antarctica: Addressing the consequences of human presence in the white continent
2022
Lavergne, Céline | Celis-Plá, Paula S.M. | Chenu, Audran | Rodríguez-Rojas, Fernanda | Moenne, Fabiola | Díaz, María José | Abello-Flores, María Jesús | Díaz, Patricia | Garrido, Ignacio | Bruning, Paulina | Verdugo, Marcelo | Lobos, M Gabriela | Sáez, Claudio A.
Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.
显示更多 [+] 显示较少 [-]Smoke and the eyes: A review of the harmful effects of wildfire smoke and air pollution on the ocular surface
2022
Jaiswal, Sukanya | Jalbert, Isabelle | Schmid, Katrina | Tein, Natasha | Wang, Sarah | Golebiowski, Blanka
Wildfires are occurring worldwide with greater frequency and intensity. Wildfires, as well as other sources of air pollution including environmental tobacco smoke, household biomass combustion, agricultural burning, and vehicular emissions, release large amounts of toxic substances into the atmosphere. The ocular surface is constantly exposed to the ambient air and is hence vulnerable to damage from air pollutants. This review describes the detrimental effects of wildfire smoke and air pollution on the ocular surface and resultant signs and symptoms. The latest relevant evidence is synthesised and critically evaluated. A mechanism for the pathophysiology of ocular surface damage will be proposed considering the existing literature on respiratory effects of air pollution. Current strategies to reduce human exposure to air pollutants are discussed and specific possible approaches to protect the ocular surface and manage air pollution induced ocular surface damage are suggested. Further avenues of research are suggested to understand how acute and chronic air pollution exposure affects the ocular surface including the short and long-term implications.
显示更多 [+] 显示较少 [-]Integrated biotechnology to mitigate green tides
2022
Ren, Cheng-Gang | Liu, Zheng-Yi | Zhong, Zhi-Hai | Wang, Xiao-Li | Qin, Song
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
显示更多 [+] 显示较少 [-]Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development
2022
Zhao, Miaomiao | Yin, Nuoya | Yang, Renjun | Li, Shichang | Zhang, Shuxian | Faiola, Francesco
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs’ potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
显示更多 [+] 显示较少 [-]