细化搜索
结果 1-10 的 145
Environmental changes affecting physiological responses and growth of hybrid grouper – The interactive impact of low pH and temperature
2021
Thalib, Yusnita A | Razali, Ros Suhaida | Mohamad, Suhaini | Zainuddin, Rabi’atul ‘Adawiyyah | Rahmah, Sharifah | Ghaffar, Mazlan Abd | Nhan, Hua Thai | Liew, Hon Jung
Rising of temperature in conjunction with acidification due to the anthropogenic climates has tremendously affected all aquatic life. Small changes in the surrounding environment could lead to physiological constraint in the individual. Therefore, this study was designed to investigate the effects of warm water temperature (32 °C) and low pH (pH 6) on physiological responses and growth of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles for 25 days. Growth performance was significantly affected under warm water temperature and low-pH conditions. Surprisingly, the positive effect on growth was observed under the interactive effects of warm water and low pH exposure. Hybrid grouper exposed to the interactive stressor of warm temperature and low pH exhibited higher living cost, where HSI content was greatly depleted to about 2.3-folds than in normal circumstances. Overall, challenge to warm temperature and low pH induced protein mobilization as an energy source followed by glycogen and lipid to support basal metabolic needs.
显示更多 [+] 显示较少 [-]A hybrid air pollutant concentration prediction model combining secondary decomposition and sequence reconstruction
2020
Sun, Wei | Huang, Chenchen
Acid rain is a serious threat to terrestrial ecosystems. To provide more accurate early warning information for acid rain prevention, urban planning, and travel planning, a novel air pollutant prediction model was proposed in this paper to predict NO₂ and SO₂. First, the data were decomposed into several sub-sequences by a complete ensemble empirical mode decomposition with adaptive noise. Second, the subsequences are reconstructed by variational mode decomposition and sample entropy. Then, the new subsequences are predicted by the extreme learning machine combined with the whale optimization algorithm. The empirical analysis was carried out through 8 data sets. According to the experimental results, three main conclusions can be drawn. First, the proposed model in this paper has excellent prediction performance and robustness. In all the comparison experiments, the R² and RMSE of the proposed model are the best among all the models. Second, data preprocessing is very necessary. After adding the decomposition algorithm, the average improvement levels of R² and RMSE were 897.57% and 50.78%, respectively. Third, the re-decomposition of IMF1 is an effective method to improve prediction accuracy. After the re-decomposition of IMF1, R² can be improved by 13.64% on average on the original basis, and RMSE can be reduced by 31.99% on average. The results of this study can provide a valuable reference for the research of air pollutant prediction. In future work, the application of the proposed model in other air pollutants or other regions can be explored.
显示更多 [+] 显示较少 [-]Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.)
2020
Li, Guirong | Chen, Fukai | Jia, Shengyong | Wang, Zongshuo | Zuo, Qiting | He, Hongmou
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co−contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co−contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co−contaminated soil.
显示更多 [+] 显示较少 [-]Recessivity of pyrethroid resistance and limited interspecies hybridization across Hyalella clades supports rapid and independent origins of resistance
2020
Sever, Haleigh C. | Heim, Jennifer R. | Lydy, Victoria R. | Fung, Courtney Y. | Huff Hartz, Kara E. | Giroux, Marissa S. | Andrzejczyk, Nicolette | Major, Kaley M. | Poynton, Helen C. | Lydy, Michael J.
Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P₀) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F₁) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F₁ generation was examined to assure heterozygosity. The resistant parents had permethrin LC₅₀ values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC₅₀ values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.
显示更多 [+] 显示较少 [-]Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China
2010
Lü, Ying | Dong, Fei | Deacon, Claire | Chen, Huo-jun | Raab, Andrea | Meharg, Andrew A.
The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.
显示更多 [+] 显示较少 [-]Using a land use regression model with machine learning to estimate ground level PM2.5
2021
Wong, Pei-Yi | Lee, Hsiao-Yun | Chen, Yu-Cheng | Zeng, Yu-Ting | Chern, Yinq-Rong | Chen, Nai-Tzu | Candice Lung, Shih-Chun | Su, Huey-Jen | Wu, Chih-Da
Ambient fine particulate matter (PM₂.₅) has been ranked as the sixth leading risk factor globally for death and disability. Modelling methods based on having access to a limited number of monitor stations are required for capturing PM₂.₅ spatial and temporal continuous variations with a sufficient resolution. This study utilized a land use regression (LUR) model with machine learning to assess the spatial-temporal variability of PM₂.₅. Daily average PM₂.₅ data was collected from 73 fixed air quality monitoring stations that belonged to the Taiwan EPA on the main island of Taiwan. Nearly 280,000 observations from 2006 to 2016 were used for the analysis. Several datasets were collected to determine spatial predictor variables, including the EPA environmental resources dataset, a meteorological dataset, a land-use inventory, a landmark dataset, a digital road network map, a digital terrain model, MODIS Normalized Difference Vegetation Index (NDVI) database, and a power plant distribution dataset. First, conventional LUR and Hybrid Kriging-LUR were utilized to identify the important predictor variables. Then, deep neural network, random forest, and XGBoost algorithms were used to fit the prediction model based on the variables selected by the LUR models. Data splitting, 10-fold cross validation, external data verification, and seasonal-based and county-based validation methods were used to verify the robustness of the developed models. The results demonstrated that the proposed conventional LUR and Hybrid Kriging-LUR models captured 58% and 89% of PM₂.₅ variations, respectively. When XGBoost algorithm was incorporated, the explanatory power of the models increased to 73% and 94%, respectively. The Hybrid Kriging-LUR with XGBoost algorithm outperformed the other integrated methods. This study demonstrates the value of combining Hybrid Kriging-LUR model and an XGBoost algorithm for estimating the spatial-temporal variability of PM₂.₅ exposures.
显示更多 [+] 显示较少 [-]A hybrid DNA sequencing approach is needed to properly link genotype to phenotype in multi-drug resistant bacteria
2021
Farooq, Adeel | Kim, Jungman | Raza, Shahbaz | Jang, Jeonghwan | Han, Dukki | Sadowsky, M. J. (Michael J.) | Unno, Tatsuya
Antibiotic resistance genes (ARGs) are now viewed as emerging contaminants posing a potential worldwide human health risk. The degree to which ARGs are transferred to other bacteria via mobile genetic elements (MGEs), including insertion sequences (ISs), plasmids, and phages, has a strong association with their likelihood to function as resistance transfer determinants. Consequently, understanding the structure and function of MGEs is paramount to assessing future health risks associated with ARGs in an environment subjected to strong antibiotic pressure. In this study we used whole genome sequencing, done using MinION and HiSeq platforms, to examine antibiotic resistance determinants among four multidrug resistant bacteria isolated from fish farm effluent in Jeju, South Korea. The combined data was used to ascertain the association between ARGs and MGEs. Hybrid assembly using HiSeq and MinION reads revealed the presence of IncFIB(K) and pVPH2 plasmids, whose sizes were verified using pulsed field gel electrophoresis. Twenty four ARGs and 95 MGEs were identified among the 955 coding sequences annotated on these plasmids. More importantly, 22 of 24 ARGs conferring resistance to various antibiotics were found to be located near MGEs, whereas about a half of the ARGs (11 out of 21) were so in chromosomes. Our results also suggest that the total phenotypic resistance exhibited by the isolates was mainly contributed by these putatively mobilizable ARGs. The study gives genomic insights into the origins of putatively mobilizable ARGs in bacteria subjected to selection pressure.
显示更多 [+] 显示较少 [-]A comparative study of immobilizing ammonium molybdophosphate onto cellulose microsphere by radiation post-grafting and hybrid grafting for cesium removal
2021
Dong, Zhen | Du, Jifu | Chen, Yanliang | Zhang, Manman | Zhao, Long
Ammonium molybdophosphate (AMP) exhibits high selectivity towards Cs but it cannot be directly applied in column packing, so it is necessary to prepare AMP–based adsorbents into an available form to improve its practicality. This work provided two AMP immobilized cellulose microspheres (MCC@AMP and MCC-g-AMP) as adsorbents for Cs removal by radiation grafting technique. MCC-g-AMP was prepared by radiation graft polymerization of GMA on microcrystalline cellulose microspheres (MCC) followed by reaction with AMP suspension, and MCC@AMP was synthesized by radiation hybrid grafting of AMP and GMA onto MCC through one step. The different structures and morphologies of two adsorbents were characterized by FTIR and SEM. The adsorption properties of two adsorbents against Cs were investigated and compared in batch and column experiments under different conditions. Both adsorbents were better obeyed pseudo-second-order kinetic model and Langmuir model. MCC-g-AMP presented faster adsorption kinetic and more stable structure, whereas MCC@AMP presented more facile synthesis and higher adsorption capacity. MCC@AMP was pH independent in the range of pH 1–12 but MCC-g-AMP was sensitive to pH for Cs removal. The saturated column adsorption capacities of MCC@AMP and MCC-g-AMP were 5.4 g-Cs/L-ad and 0.75 g-Cs/L-ad in column adsorption experiments at SV 10 h⁻¹. Both adsorbents exhibited very high radiation stability and can maintain an adsorption capacity of >85% even after 1000 kGy γ-irradiation. On the basis, two AMP-loaded adsorbents possessed promising application in removal of Cs from actual contaminated groundwater. These findings provided two efficient adsorbents for treatment of Cs in radioactive waste disposal.
显示更多 [+] 显示较少 [-]Feeding behavior responses of a juvenile hybrid grouper, Epinephelus fuscoguttatus♀ × E. lanceolatus♂, to microplastics
2021
Xu, Jiayi | Li, Daoji
In recent decades, microplastic (MP) pollution has become a severe problem in aquatic environments. Yet the behavioral and selective responses of fish toward different types of MPs remain unclear. We therefore conducted laboratory-based video observations to investigate the behavioral responses of hybrid grouper juveniles (tiger grouper Epinephelus fuscoguttatus♀ × giant grouper E. lanceolatus♂) to eight different types of MPs. We observed four distinct feeding behaviors: (i) normal ingestion of MPs, which rarely occurred (0%–6%); (ii) pursuit, capture, and tasting of MPs, after which MPs were quickly spat out; (iii) detection and rejection of MPs without attack; and (iv) no significant response to MPs. Our results indicate that juveniles can distinguish MPs as inedible particle and behave differently between MPs with different sizes, colors, and materials, primarily using visual and gustatory senses. Notably, 50%–90% of MP rejection events occurred before capture. Juveniles spent double the time evaluating large nylon particles than they did evaluating large polyvinyl chloride particles before capture, but half the time tasting after capture. Although we observed no sub-lethal or lethal effects of MPs, we conclude that the presence of MPs can still have an impact on groupers in aquaculture. For instance, in the densely stocked conditions of an aquaculture unit, the fish could lose visibility and can inadvertently ingest MPs, thus suffering from their toxic impacts.
显示更多 [+] 显示较少 [-]Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone
2018
Xu, Wen | Shang, Bo | Xu, Yansen | Yuan, Xiangyang | Dore, Anthony J. | Zhao, Yuanhong | Massad, Raia-Silvia | Feng, Zhaozhong
The stomatal compensation point of ammonia (χs) is a key factor controlling plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and varies among plant species. However, knowledge gaps remain concerning the effects of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting in large uncertainties in the parameterizations of NH3 incorporated into atmospheric chemistry and transport models (CTMs). Here, we present leaf-scale measurements of χs for hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in two N treatments (N0, no N added; N50, 50 kg N ha−1 yr−1 urea fertilizer added) and two O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 105 days. Our results showed that χs was significantly reduced by E-O3 (41%) and elevated N (19%). The interaction of N and O3 was significant, and N can mitigate the negative effects of O3 on χs. Elevated O3 significantly reduced the light-saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly increased intercellular CO2 concentrations (Ci), but had no significant effect on stomatal conductance (gs). By contrast, elevated N did not significantly affect all measured photosynthetic parameters. Overall, χs was significantly and positively correlated with Asat, gs and Chl, whereas a significant and negative relationship was observed between χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. Our findings provide a scientific basis for optimizing parameterizations of χs in CTMs in response to environmental change factors (i.e., elevated N deposition and/or O3) in the future.
显示更多 [+] 显示较少 [-]