细化搜索
结果 1-5 的 5
Preparation, Characterization, and Adsorption Behavior of Cu(II) Ions onto Alkali-Treated Weed (Imperata cylindrica) Leaf Powder
2009
Hanafiah, M. A. K. M. | Zakaria, H. | Wan Ngah, W. S.
The adsorption of Cu(II) ions by sodium-hydroxide-treated Imperata cylindrica (SoHIC) leaf powder was investigated under batch mode. The influence of solution pH, adsorbent dosage, shaking rate, copper concentration, contact time, and temperature was studied. Copper adsorption was considered fast as the time to reach equilibrium was 40-90 min. Several kinetic models were applied and it was found that pseudo-second-order fitted well the adsorption data. In order to understand the mechanism of adsorption, spectroscopic analyses involving scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectrophotometer were carried out. Ion exchange was proven the main mechanism involved as indicated by EDS spectra and as there was a release of light metal ions (K⁺, Na⁺, Mg²⁺, and Ca²⁺) during copper adsorption. Complexation also occurred as demonstrated by FTIR spectra involving hydroxyl, carboxylate, phosphate, ether, and amino functional groups. The equilibrium data were correlated with Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Based on Langmuir model, the maximum adsorption capacity was recorded at the highest temperature of 310 K, which was 11.64 mg g⁻¹.
显示更多 [+] 显示较少 [-]Imperata cylindrica (Cogongrass) as an Adsorbent for Methylene Blue Dye Removal: Process Optimization
2014
Su, Claire Xin-Hui | Teng, Tjoon Tow | Alkarkhi, Abbas F. M. | Low, Ling Wei
A common weed, Imperata cylindrica (cogongrass), was used as a low-cost adsorbent for the adsorption of methylene blue (MB) and the process optimized. The effects of four factors, namely, shaking speed (100–300 rpm), pH (3–9), contact time (10–40 min) and adsorbent dosage (0.4–1.0 g), on colour removal and chemical oxygen demand (COD) reduction of MB were studied and optimized using fractional factorial design and response surface methodology. The two factors that play a vital role in the adsorption process are pH and adsorbent dosage. From the results, colour removal and COD reduction recorded coefficient of determination (r ²) values of 0.9600 and 0.9594, respectively. Optimum adsorption conditions, resulting in 99.09 % colour removal and 97.87 % COD reduction, were achieved at shaking speed of 100 rpm, pH 9, 40 min contact time and adsorbent dosage of 1.0 g. The adsorption systems for MB dye were found to fit the pseudo-second order model instead of the pseudo-first order model, while equilibrium studies showed that the adsorption process followed the Langmuir isotherm.
显示更多 [+] 显示较少 [-]Chemical Modification of Imperata cylindrica Leaf Powder for Heavy Metal Ion Adsorption
2013
Li, Zhimin | Teng, Tjoon Tow | Alkarkhi, Abbas F. M. | Rafatullah, Mohd | Low, Ling Wei
Imperata cylindrica leaf was used as raw material to prepare two different adsorbents through chemical modification by using sulfuric acid and phosphoric acid. These two adsorbents, sulfuric acid-modified I. cylindrica leaf-based adsorbent (SIC) and phosphoric acid-modified I. cylindrica leaf-based adsorbent (PIC), were used to adsorb nickel ions (Ni²⁺) from aqueous solutions. The I. cylindrica leaf-based adsorbent and modified I. cylindrica leaf-based adsorbents were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Different operational parameters such as initial solution pH, adsorbent size, adsorbent dosage, initial Ni²⁺ ion concentration, and temperature were studied. The adsorption isotherm and the adsorption kinetics were studied systematically. Based on the FT-IR spectrum before and after adsorption of Ni²⁺ ions, the adsorption mechanism involved both ion exchange and complexation between Ni²⁺ ions and functional groups on the surface of adsorbents. There was no sulfur and phosphorus detected in the aqueous solutions after adsorption. Therefore, SIC and PIC are effective in adsorbing Ni²⁺ ions and will not cause secondary pollution to the environment.
显示更多 [+] 显示较少 [-]Phytoremediation potentials of selected tropical plants for Ethidium bromide
2007
Uera, Raynato B. | Paz-Alberto, Annie Melinda | Sigua, Gilbert C.
BACKGROUND, AIMS AND SCOPE: Research and development has its own benefits and inconveniences. One of the inconveniences is the generation of enormous quantity of diverse toxic and hazardous wastes and its eventual contamination to soil and groundwater resources. Ethidium bromide (EtBr) is one of the commonly used substances in molecular biology experiments. It is highly mutagenic and moderately toxic substance used in DNA-staining during electrophoresis. Interest in phytoremediation as a method to solve chemical contamination has been growing rapidly in recent years. The technology has been utilized to clean up soil and groundwater from heavy metals and other toxic organic compounds in many countries like the United States, Russia, and most of European countries. Phytoremediation requires somewhat limited resources and very useful in treating wide variety of environmental contaminants. This study aimed to assess the potential of selected tropical plants as phytoremediators of EtBr. MATERIALS AND METHODS: This study used tomato (Solanum lycopersicum), mustard (Brassica alba), vetivergrass (Vetiveria zizanioedes), cogongrass (Imperata cylindrica), carabaograss (Paspalum conjugatum), and talahib (Saccharum spontaneum) to remove EtBr from laboratory wastes. The six tropical plants were planted in individual plastic bags containing soil and 10% EtBr-stained agarose gel. The plants were allowed to establish and grow in soil for 30 days. Ethidium bromide content of the test plants and the soil were analyzed before and after soil treatment. Ethidium bromide contents of the plants and soils were analyzed using an UV VIS spectrophotometer. RESULTS: Results showed a highly significant (p≤0.001) difference in the ability of the tropical plants to absorb EtBr from soils. Mustard registered the highest absorption of EtBr (1.4±0.12 μg kg⁻¹) followed by tomato and vetivergrass with average uptake of 1.0±0.23 and 0.7±0.17 μg kg⁻¹ EtBr, respectively. Cogongrass, talahib, and carabaograss had the least amount of EtBr absorbed (0.2±0.6 μg kg⁻¹). Ethidium bromide content of soil planted to mustard was reduced by 10.7%. This was followed by tomato with an average reduction of 8.1%. Only 5.6% reduction was obtained from soils planted to vetivergrass. Soils planted to cogongrass, talahib, and carabaograss had the least reduction of 1.52% from its initial EtBr content. DISCUSSION: In this study, mustard, tomato, and vetivergrass have shown their ability to absorb EtBr from contaminated soil keeping them from expanding their reach into the environment and preventing further contamination. Its downside, however, is that living creatures including humans, fish, and birds, must be prevented from eating the plants that utilized these substances. Nonetheless, it is still easier to isolate, cut down, and remove plants growing on the surface of the contaminated matrices, than to use strong acids and permanganates to chemically neutralize a dangerous process that can further contaminate the environment and pose additional risks to humans. Though this alternative method does not totally eliminate eventual environmental contamination, it is by far produces extremely insignificant amount of by-products compared with the existing processes and technologies. CONCLUSIONS: Mustard had the highest potential as phytoremediator of EtBr in soil. However, the absorption capabilities of the other test plants may also be considered in terms of period of maturity and productivity. RECOMMENDATIONS AND PERSPECTIVES: It is recommended that a more detailed and complete investigation of the phytoremediation properties of the different plants tested should be conducted in actual field experiments. Plants should be exposed until they reach maturity to establish their maximum response to the toxicity and mutagenecity of EtBr and their maximum absorbing capabilities. Different plant parts should be analyzed individually to determine the movement and translocation of EtBr from soil to the tissues of plants. Since this study has established that some plants can thrive and dwell in EtBr-treated soil, an increased amount of EtBr application should be explored in future studies. It is suggested therefore that a larger, more comprehensive exploration of phytoremediation application in the management of toxic and hazardous wastes emanating from biotechnology research activities should be considered especially on the use of vetivergrass, a very promising tropical perennial grass.
显示更多 [+] 显示较少 [-]Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.)
2007
Paz-Alberto, Annie Melinda | Sigua, Gilbert C. | Baui, Bellrose G. | Prudente, Jacqueline A.
BACKGROUND, AIMS AND SCOPE: The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. METHODS: The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg⁻¹ (37.5 kg ha⁻¹) and 150 mg kg⁻¹ (75 kg ha⁻¹) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. RESULTS: On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha⁻¹). Carabaograss had the lowest herbage mass production of 4.12 Mg ha⁻¹ and 5.72 Mg ha⁻¹ from soils added with 75 and 150 mg Pb kg⁻¹, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg⁻¹). This was followed by cogongrass (2.34 ± 0.52 mg kg⁻¹) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg⁻¹. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg⁻¹) to the soil. DISCUSSION: Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. CONCLUSIONS: The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. RECOMMENDATIONS AND PERSPECTIVES: High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks.
显示更多 [+] 显示较少 [-]