细化搜索
结果 1-10 的 13
Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin
2014
Cachon, Boris Fresnel | Firmin, Stéphane | Verdin, Anthony | Ayi-Fanou, Lucie | Billet, Sylvain | Cazier, Fabrice | Martin, Perrine J. | Aissi, Faustin | Courcot, Dominique | Sanni, Ambaliou | Shirali, Pirouz
After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM2.5 and PM>2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm2) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators.
显示更多 [+] 显示较少 [-]Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers
2010
Kinani, Said | Bouchonnet, Stéphane | Creusot, Nicolas | Bourcier, Sophie | Balaguer, Patrick | Porcher, Jean-Marc | Aït-Aïssa, Sélim
A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28–96% of estrogenic activities in bioassays (0.2–6.3 ng/g 17β-estradiol equivalents) were explained by 17β-estradiol and estrone. PAHs were major contributors (20–60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment. Multiple endocrine disrupting chemicals (ER, AR, AhR and PXR ligands) are detected in French river sediments using a panel of in vitro bioassays and analytical methods.
显示更多 [+] 显示较少 [-]C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays
2009
Spohn, P. | Hirsch, C. | Hasler, F. | Bruinink, A. | Krug, H.F. | Wick, P.
Since the discovery of fullerenes in 1985, these carbon nanospheres have attracted attention regarding their physico/chemical properties. Despite little knowledge about their impact on the environment and human health, the production of fullerenes has already reached an industrial scale. However, the toxicity of C60 is still controversially discussed. The aim of this study was to clarify the biological effects of tetrahydrofuran (THF) suspended C60 fullerene in comparison to water stirred C60 fullerene suspensions. Beyond that, we analyzed the effects on the Crustacea Daphnia magna an indicator for ecotoxicological effects and the human lung epithelial cell line A549 as a simplified model for the respiratory tract. We could demonstrate that water-soluble side products which were formed in THF nC60 suspension were responsible for the observed acute toxic effects, whereas fullerenes themselves had no negative effect regardless of the preparative route on either A549 cell in vitro or D. magna in vivo. THF suspended nC60 did not show any toxic effect to Daphnia and lung cells when side products were eliminated by additional washing steps.
显示更多 [+] 显示较少 [-]Effects of prevalent freshwater chemical contaminants on in vitro growth of Escherichia coli and Klebsiella pneumoniae
2008
Higgins, J. | Hohn, C.
Many surface and ground waters in the continental US are contaminated with a variety of chemical pollutants, which are usually present in concentrations in the ppm and ppb range. The effects of these pollutants on coliform bacteria, which are prominent members of the aquatic flora, are poorly understood. Using a microtiter plate assay, isolates of Escherichia coli (from chicken intestine and fresh water), and an isolate of Klebsiella pneumoniae (from bovine milk) were exposed to varying concentrations of common pollutants over a 24 h period. The herbicides/pesticides simazine, atrazine, and diazinon; the VOCs trichloroethene and MTBE; the estrogens estradiol and estrone; and caffeine, all failed to inhibit bacterial growth at ppm levels. Only ethylene glycol, and the herbicide 2,4-D, significantly inhibited bacterial growth compared to controls. These results suggest that the replication of coliform bacteria in fresh waters is not adversely impacted by many common pollutants. Using a microtiter plate assay, E. coli and Klebsiella bacteria were exposed to a panel of common chemical pollutants of fresh water; only ethylene glycol and 2,4-D inhibited bacterial replication.
显示更多 [+] 显示较少 [-]Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions
2020
Sabovljević, Marko S. | Weidinger, Marieluise | Sabovljević, Aneta D. | Stanković, Jelena | Adlassnig, Wolfram | Lang, Ingeborg
Mosses are frequently used to monitor atmospheric metal contamination but few studies on metal adsorption under controlled conditions are available. Here, the accumulation of the heavy metals copper and zinc was studied in the acrocarp moss Atrichum undulatum. An in vitro culture of A. undulatum was established and the same line, size and equally old remets were exposed to six different treatments representing various metal exposure times and washing scenarios as rain simulation. The metal treatments were done in copper and zinc salts (Cu-acetate, CuSO4, ZnSO4 and ZnCl2, respectively). Energy-Dispersive X-ray microanalysis (EDX) was employed to detect bound heavy metals on the moss plantlets. Element distribution in stems and leaves was measured separately. The aqueous solution of metal salts facilitated an adsorption of both elements in the moss tissue as compared to solid medium. Furthermore, A. undulatum can tolerate pollution of zinc and copper in a distinctive extent; our data point towards a higher zinc tolerance whereas copper is rather harmful. However, semi-quantitatively, less zinc was detected within the moss tissue compared to copper. Interestingly, a strong positive correlation between the accumulation of copper/zinc and iron, and a strong negative correlation between copper/zinc and magnesium, respectively, was documented.
显示更多 [+] 显示较少 [-]Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch
2008
Fernández, R. | Bertrand, A. | Casares, A. | García, R. | González, A. | Tamés, R.S.
The effect of Cd on woody fleabane (Dittrichia viscosa (L.) Greuter) and white birch (Betula celtiberica Rothm. & Vasc.) was examined. Woody fleabane and white birch were grown in vitro in Murashige, T., Skoog, F., [1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-479] (MS) plus Cd (10 mg Cd kg-1) and except for root length in white birch, plant development was inhibited when Cd was added. Cd accumulation in above-ground tissues showed differences among clones, reaching 1300 and 463 mg Cd kg-1 dry wt. in selected clones of woody fleabane and white birch, respectively. Tolerance of Paxillus filamentosus (Scop) Fr. to Cd was also examined before mycorrhization. Plants of mycorrhized white birch grown in the presence of Cd had a better development and accumulated more Cd in their shoots than the non-mycorrhized ones. The use of selected clones of woody fleabane and the mycorrhization of white birch enhance extraction efficiency from contaminated soils in phytoremediation programs. The high accumulation of Cd observed in selected clones of Dittrichia viscosa and mycorrhized Betula celtiberica grown in vitro implies a potential application for phytoextraction.
显示更多 [+] 显示较少 [-]Optimization of Culture Conditions for the Biodegradation of Lindane by the Polypore Fungus Ganoderma australe
2009
Dritsa, V. | Rigas, F. | Doulia, D. | Avramides, E. J. | Hatzianestis, I.
The bracket-like polypore fungus, Ganoderma australe, was selected for its potential to degrade lindane in liquid agitated sterile cultures. An orthogonal central composite design based on response surface methodology was used to find the optimum biodegradation and biosorption conditions of this pesticide and the growth conditions of the fungus. The factors tested include nitrogen content, initial concentration of lindane, incubation time, and temperature. The optimization parameters investigated were fungus biomass, fungus growth rate, final pH, specific biodegradation, specific biosorption, specific biodegradation rate, biodegraded to biosorbed ratio. The results of the experiments were statistically analyzed and the significance and effect of each factor on responses was assessed. The optimum (maximum) lindane biodegradation (3.11 mg biodegraded lindane per gram biomass) was obtained with nitrogen content of 1.28 g/L, lindane concentration of 7.0 ppm, temperature of 18.0°C, and 5 days of cultivation time.
显示更多 [+] 显示较少 [-]Biovolatilization of Arsenic by Different Fungal Strains
2007
Urík, Martin | Čerňanský, Slavomír | Ševc, Jaroslav | Šimonovičová, Alexandra | Littera, Pavol
The quantification of arsenic biovolatilization by microscopic filamentous fungi Aspergillus clavatus, A. niger, Trichoderma viride and Penicillium glabrum under laboratory conditions is discussed in this article. The fungi were cultivated on a liquid medium enriched with inorganic arsenic in pentavalent form (H₃AsO₄). Filamentous fungi volatilized 0.010 mg to 0.067 mg and 0.093 mg to 0.262 mg of arsenic from cultivation systems enriched with 0.25 mg (5 mg.l-¹ of arsenic in culture media) and 1.00 mg of arsenic (20 mg.l-¹ of arsenic in culture media), respectively. These results represent the loss of arsenic after a 30-day cultivation from cultivation systems. The production of volatile arsenic derivatives by the A. niger and A. clavatus strains was also determined by hourly sorption using the sorbent Anasorb (CSC) on the 29th day of cultivation.
显示更多 [+] 显示较少 [-]Effects of a Copper-Resistant Fungus on Copper Adsorption and Chemical Forms in Soils
2009
Du, Aixue | Cao, Lixiang | Zhang, Renduo | Pan, Rong
For bioremediation of copper-contaminated soils, it is essential to understand copper adsorption and chemical forms in soils related to microbes. In this study, a Penicillium strain, which can tolerate high copper concentrations up to 150 mmol l⁻¹ Cu²⁺, was isolated from a copper mining area. The objective was to study effects of this fungus on copper adsorptions in solutions and chemical forms in soils. Results from lab experiments showed the maximum biosorptions occurred at 360 min with 6.15 and 15.08 mg g⁻¹ biomass from the media with Cu²⁺ of 50 and 500 mg l⁻¹, respectively. The copper was quickly adsorbed by the fungus within the contact time of the first 60 min. To characterize the adsorption process of copper, four types of kinetics models were used to fit the copper adsorption data vs. time. Among the kinetics models, the two-constant equation gave the best results, as indicated by the high coefficients of determination (R ² = 0.89) and high significance (p < 0.01). The addition of the fungal strain to autoclaved soil facilitated increases in concentrations of acid-soluble copper, copper bound to oxides, and of copper bound to organic matter (p < 0.05). However, the inoculation of Penicillium sp. A1 led to a decrease of water-soluble copper in the soil. The results suggested that Penicillium sp. A1 has the potential for bioremediation of copper-contaminated soils.
显示更多 [+] 显示较少 [-]Assessing the Potential of Rhizobacteria to Survive under Phenanthrene Pollution
2009
Golubev, Sergey N. | Schelud'ko, Andrei V. | Muratova, Anna Yu | Makarov, Oleg E. | Turkovskaya, Olga V.
Rhizobacteria possess a wide variety of qualities governing their pollutant-catabolic and rhizospheric competences. We investigated how the abilities to degrade phenanthrene and other polycyclic aromatic hydrocarbons (PAHs), to synthesize surfactants and the phytohormone indole-3-acetic acid (IAA), to be motile, and to perform chemotaxis toward phenanthrene and some potential root-exudate components were manifested in rhizobacteria isolated from oil-polluted sites. We observed that most of the examined rhizobacteria had the abilities under consideration and that in some strains, these were strongly affected by the bacterial environment. Only one strain--Sinorhizobium meliloti P221--exhibited increased PAH-degrading, surfactant-producing, and IAA-synthesizing activities, as well as distinct behavioral responses. We conclude that S. meliloti P221 can be used as a model to assess the contributions of all these activities to plant-inoculation-induced reduction in the soil PAH contents. This strain also may be useful for phytoremediation applications.
显示更多 [+] 显示较少 [-]