细化搜索
结果 1-10 的 755
Toward an interdisciplinary approach to assess the adverse health effects of dust-containing polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s on preschool children
2023
Castel, Rebecca | Bertoldo, Raquel | Lebarillier, Stéphanie | Noack, Yves | Orsière, Thierry | Malleret, Laure | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Psychologie Sociale (LPS) ; Aix Marseille Université (AMU) | Laboratoire Chimie de l'environnement (LCE) ; Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) | Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-11-LABX-0010,DRIIHM / IRDHEI,Dispositif de recherche interdisciplinaire sur les Interactions Hommes-Milieux(2011)
Tools and constraints in monitoring interactions between marine litter and megafauna: Insights from case studies around the world
2019
Claro, F | Fossi, Mc | Ioakeimidis, C | Baini, M | Lusher, Al | Mc Fee, W | Mcintosh, Rr | Pelmatti, T | Sorce, M | Galgani, Francois | Hardesky, Bd
Adverse impacts of marine litter is documented on >1400 species, including marine megafauna (fish, birds, sea turtles and mammals). The primary impacts include ingestion and entanglement, and there is increasing concern about chemical contamination via ingestion. Numerous survey approaches and monitoring programs have been developed and implemented around the world. They may aim to provide data about parameters such as species distribution and interactions with anthropogenic activities. During the Sixth International Marine Debris Conference, a session was dedicated to the tools and constraints in monitoring interactions between litter and megafauna. In the present paper, we summarize 7 case studies which discuss entanglement and ingestion including macro- and micro-debris in several taxa and across multiple geographic regions. We then discusses the importance of tools and standardizing methods for assessment and management purposes, in the context of international environmental policies and marine litter strategies.
显示更多 [+] 显示较少 [-]ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis
2022
Zhang, Lu | Yin, Wei | Shen, Siyi | Feng, Yuyun | Xu, Wenjie | Sun, Yunfei | Yang, Zhou
Under intensive human activity, sewage discharge causes eutrophication-driven cyanobacteria blooms as well as nanomaterial pollution. In biological control of harmful cyanobacteria, top-down effect of protozoan has great potentials for removing cyanobacterial populations, degrading cyanotoxins, and improving phytoplankton community. ZnO nanoparticles as a kind of emerging contaminants have attracted increasing attention because of wide application and their high bio-toxicity effects on reducing the ingestion of aquatic animals including Paramecium, thereby possibly disturbing top-down control of cyanobacteria. Therefore, this study investigated the effects of ZnO nanoparticles at environmental-relevant concentrations on the protozoan Paramecium removing toxic Microcystis. Results showed Paramecium effectively eliminated all the Microcystis, despite exposure to ZnO nanoparticles. However, their ingestion rate was significantly reduced at more than 0.1 mg L⁻¹ ZnO nanoparticles, thereby delaying Microcystis removal. Nevertheless, at 0.1 mg L⁻¹ ZnO nanoparticles, the time to Microcystis extinction decreased compared to the group without ZnO nanoparticles, because Microcystis populations were reduced under this circumstance, while ingestion rate of Paramecium was unaffected. Furthermore, ZnO nanoparticles obviously accumulated in food vacuoles of Paramecium, and the size of nanoparticles aggregates and zinc concentrations in Paramecium were increased with ZnO nanoparticles concentrations. At the end of experiment, these food vacuoles were not dissipated. Overall, these findings suggest that ZnO nanoparticles impair protozoan top-down effects through reducing Microcystis and ingestion rate as well as disturbing functions of their digestive organelles, and highlight the need to consider the interfering effects of environmental pollutants on cyanobacterial removal efficiency by protozoans in natural waters.
显示更多 [+] 显示较少 [-]The impact of marine debris on cetaceans with consideration of plastics generated by the COVID-19 pandemic
2022
Eisfeld-Pierantonio, Sonja Mareike | Pierantonio, Nino | Simmonds, Mark P.
The accumulation of human-derived debris in the oceans is a global concern and a serious threat to marine wildlife. There is a volume of evidence that points to deleterious effects of marine debris (MD) on cetaceans in terms of both entanglement and ingestion. This review suggests that about 68% of cetacean species are affected by interacting with MD with an increase in the number of species reported to have interacted with it over the past decades. Despite the growing body of evidence, there is an ongoing debate on the actual effects of plastics on cetaceans and, in particular, with reference to the ingestion of microplastics and their potential toxicological and pathogenic effects. Current knowledge suggests that the observed differences in the rate and nature of interactions with plastics are the result of substantial differences in species-specific diving and feeding strategies. Existing projections on the production, use and disposal of plastics suggest a further increase of marine plastic pollution. In this context, the contribution of the ongoing COVID-19 pandemic to marine plastic pollution appears to be substantial, with potentially serious consequences for marine life including cetaceans. Additionally, the COVID-19 pandemic offers an opportunity to investigate the direct links between industry, human behaviours and the effects of MD on cetaceans. This could help inform management, prevention efforts, describe knowledge gaps and guide advancements in research efforts. This review highlights the lack of assessments of population-level effects related to MD and suggests that these could be rather immediate for small populations already under pressure from other anthropogenic activities. Finally, we suggest that MD is not only a pollution, economic and social issue, but also a welfare concern for the species and populations involved.
显示更多 [+] 显示较少 [-]Spatial distribution of microplastics in Chinese freshwater ecosystem and impacts on food webs
2022
Over the past two decades, there has been a lot of discussion about the rapid increase of microplastics (MPs) due to their persistence, ubiquity, and toxicity. The widespread distribution of MPs in various freshwater ecosystems makes them available for different trophic levels biota. The ingestion and trophic transfer of MPs may induce potential impacts on freshwater food webs. Therefore, this systematic review is an in-depth review of 51 recent studies to confirm the spatial distribution of MPs in the Chinese freshwater ecosystem including water, sediment and biota, exposure pathways, and impacts on freshwater food webs. The result suggested the white, transparent and colored, Polypropylene (PP) and Polyethylene (PE) of <1 mm fibers were dominant in Chinese freshwaters. The uptake of MPs by various freshwater organisms as well as physiological, biological and chemical impacts on food webs were also elucidated. At last, some limitations were discussed for future studies to better understand the effects of MPs on food webs.
显示更多 [+] 显示较少 [-]Novel methodology for identification and quantification of microplastics in biological samples
2022
Malafaia, Guilherme | da Luz, Thiarlem Marinho | Araújo, Amanda Pereira da Costa | Ahmed, Mohamed Ahmed Ibrahim | Rocha-Santos, Teresa | Barceló, Damià
Currently, the evidence of the ingestion of microplastics (MPs) by organisms or the accumulation in different environmental compartments has been achieved using several methodological procedures. However, its uses have not been standardized across studies. In this study, we aim to assess and validate a protocol that can be useful for optimizing the identification and quantification procedures of polyethylene microplastics (PE MPs) in biological samples. Initially, considering that numerous studies filter samples previously digested in cellulosic membranes for isolation and analysis of MPs, we evaluated whether washing these membranes with different reagents could contribute to the complete detachment of particles, as well as to their dispersion in the obtained solutions. However, none of the tested reagents (dimethyl sulfoxide, acetone, ethyl alcohol and chloroform), including purified water, was able to completely remove the MPs adhered to the membranes or facilitate their dispersion in the solutions. On the other hand, we observed that the digestion of the membranes by acetonitrile constituted a procedure that prevents the loss of particles due to adherence, in addition to promoting good dispersion of MPs. Subsequently, we evaluated the use of Neubauer chambers for the quantification of MPs, having observed a good recovery rate (>92%) and results with insignificant variation, in PE MPs solutions with different concentrations (0.15; 0.075 and 0.0375 mg/mL). Ultimately, the validation of the proposed procedures took place from the evaluation of the accumulation of PE MPs in Astyanax spp. juveniles, having demonstrated the efficiency and sensitivity of the method proposed for this purpose. Subsequently, our study provides a methodological alternative that can optimize MPs quantifications in biological samples and reduce the generation of biased or unreliable results.
显示更多 [+] 显示较少 [-]Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes
2022
Okamoto, Konori | Nomura, Miho | Horie, Yoshifumi | Okamura, Hideo
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
显示更多 [+] 显示较少 [-]Towards a North Pacific Ocean long-term monitoring program for plastic pollution: A review and recommendations for plastic ingestion bioindicators
2022
Savoca, Matthew S. | Kuhn, Susanne | Sun, ChengJun | Avery-Gomm, Stephanie | Choy, C Anela | Dudas, Sarah | Hong, Sang Hee | Hyrenbach, K David | Li, Zongxian | Ng, Connie Ka-yan | Provencher, Jennifer F. | Lynch, Jennifer M.
Marine debris is now a ubiquitous component of the Anthropocene global ocean. Plastic ingestion by marine wildlife was first reported in the 1960s and since that time, roughly one thousand marine species have been reported to consume this debris. This study focuses on plastic ingestion by marine invertebrates and vertebrates in the North Pacific Ocean. Specifically, we reviewed the scientific literature to assess the scope of the problem, identified key bioindicator species, and proposed guidelines for future monitoring of plastic debris in North Pacific marine ecosystems. Our meta-analysis confirmed that the North Pacific is among the most polluted ocean regions globally; roughly half of all fish and seabird specimens and more than three-quarters of sea turtles and bivalve specimens examined in this region had consumed plastic. While there are not enough standardized data to assess if these ingestion rates are changing, sampling standardization and reporting of methods are improving over time. Using a rubric-evaluation approach, we evaluated 352 species for their potential to serve as bioindicators of the prevalence of plastic pollution in the North Pacific. This analysis revealed a suite of 12 bioindicator species candidates which sample a variety of ecosystem components and cover a wide range of plastic size classes. Thus, we contend that these bioindicator candidates provide a key foundation for developing a comprehensive plastic monitoring program in the region. To enhance the utility of these bioindicators, we developed a framework for standardized data collection to minimize methodological variability across different studies and to facilitate the assessment of temporal trends over space and time. Tracking plastic ingestion by these bioindicators will help to assess the effectiveness of mitigation actions in the region, a critical step to evaluate progress towards sustainability and improved ocean health in the 21st century.
显示更多 [+] 显示较少 [-]International quantification of microplastics in indoor dust: prevalence, exposure and risk assessment
2022
Soltani, Neda Sharifi | Taylor, Mark Patrick | Wilson, Scott Paton
This international scale study measured the prevalence of indoor microplastics (MPs) in deposited dust in 108 homes from 29 countries over a 1-month period. Dust borne MPs shape, colour, and length were determined using microscopy and the composition measured using μFTIR. Human health exposure and risk was assessed along with residential factors associated with MPs via a participant questionnaire. Samples were categorised according to each country's gross national income (GNI). Synthetic polymers dominated in low income (LI) (39%) and high income (HI) (46%) while natural fibres were the most prevalent in medium income (MI) (43%) countries. Composition and statistical analysis showed that the main sources of MPs and dust were predominantly from indoor sources. Across all GNI countries, greater vacuuming frequency was associated with lower MPs loading. High income country samples returned higher proportions of polyamides and polyester fibres, whereas in LI countries polyurethane was the most prominent MPs fibre. Exposure modelling showed infants (0–2 years) were exposed to the highest MPs dose through inhalation (4.5 × 10⁻⁵ ± 3 × 10⁻⁵) and ingestion (3.24 × 10⁻² ± 3.14 × 10⁻²) mg/kg-Bw/day. Health risk analysis of constituent monomers of polymers indicates cancer incidence was estimated at 4.1–8.7 per million persons across age groups. This study's analysis showed socio-economic factors and age were dominant variables in determining dose and associated health outcomes of MPs in household dust.
显示更多 [+] 显示较少 [-]Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches
2021
Vinay Kumar, B.N. | Löschel, Lena A. | Imhof, Hannes K. | Löder, Martin G.J. | Laforsch, Christian
Microplastic (MP) contamination is present in the entire marine environment from the sediment to the water surface and down to the deep sea. This ubiquitous presence of MP particles opens the possibility for their ingestion by nearly all species in the marine ecosystem. Reports have shown that MP particles are present in local commercial seafood species leading to the possible human ingestion of these particles. However, due to a lack of harmonized methods to identify microplastics (MPs), results from different studies and locations can hardly be compared. Hence, this study was aimed to detect, quantify, and estimate MP contamination in commercially important mussels originating from 12 different countries distributed worldwide. All mussels were obtained from supermarkets and were intended for human consumption. Using a combinatorial approach of focal plane array (FPA)-based micro- Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy allowed the detection and characterization of MP down to a size of 3 μm in the investigated mussels. Further, a gentle sample purification method based on enzymes has been modified in order to optimize the digestion of organic material in mussels. A random forest classification (RFC) approach, which allows a rapid discrimination between different polymer types and thus fast generation of data on MP abundance and size distributions with high accuracy, was implemented in the analytical pipeline for IR spectra. Additionally, for the first time we also applied a RFC approach for the automated characterization of Raman spectra of MPs.
显示更多 [+] 显示较少 [-]