细化搜索
结果 1-10 的 42
Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: A comparison of TiO2 nanoparticles and nanotubes 全文
2013
Yeo, Min-Kyeong | Nam, Dong-Ha
We investigated the environmental fate and bioaccumulation of TiO2 nanomaterials in a simplified paddy microcosm over a period of 17 days. Two types of TiO2 nanomaterials, nanoparticles (TiO2-NP) and nanotubes (TiO2-NT), were synthesized to have a negative surface charge. Ti concentrations in the environmental media (water, soil), crops (quillworts, water dropworts), and some lower and higher trophic organisms (biofilms, algae, plant-parasitic nematodes, white butterfly larva, mud snail, ricefish) were quantified after exposure periods of 0, 7, and 17 days. The titanium levels of the two nanomaterials were the highest in biofilms during the exposure periods. Bioaccumulation factors indicated that TiO2-NP and TiO2-NT were largely transferred from a prey (e.g., biofilm, water dropwort) to its consumer (e.g., nematodes, mud snail). Considering the potential entries of such TiO2 nanomaterials in organisms, their bioaccumulation throughout the food chain should be regarded with great concern in terms of the overall health of the ecosystem.
显示更多 [+] 显示较少 [-]Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition 全文
2020
Mofikoya, Adedayo O. | Yli-Pirilä, Pasi | Kivimäenpää, Minna | Blande, James D. | Virtanen, Annele | Holopainen, Jarmo K.
White cabbage, Brassica oleracea, plants and artificial leaves covered with B. oleracea epicuticular wax were exposed to α-pinene and α-pinene oxidation products formed through the oxidation of α-pinene by ozone (O₃) and hydroxyl (OH) radicals. O₃ and OH-induced oxidation of α-pinene led to the formation of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol particles (SOA), referred to together as oxidation products (OP). Exposure of cabbage plants to O₃ and OH-induced α-pinene OP led to the deposition and re-emission of gas-phase OP by exposed cabbage plants. In a series of 2-choice bioassays, the specialist cruciferous herbivore, Plutella xylostella adults deposited less eggs on artificial leaves exposed to α-pinene OP than on control plants exposed to clean filtered air. P. xylostella larvae did not show a specific feeding preference when offered leaves from different exposure treatments. However, the generalist Indian stick insect, Carausius morosus, fed more on control filtered air-exposed plants than on those exposed to α-pinene OP. Taken together, our results show that exposure to α-pinene oxidation products affects VOC emissions of B. oleracea and alters P. xylostella oviposition and C. morosus feeding responses.
显示更多 [+] 显示较少 [-]Microcystis aeruginosa affects the inducible anti-predator responses of Ceriodaphnia cornuta 全文
2020
Gu, Lei | Qin, Shanshan | Zhu, Shuangshuang | Lu, Na | Sun, Yunfei | Zhang, Lu | Huang, Yuan | Lyu, Kai | Chen, Yafen | Yang, Zhou
Cyanobacterial blooms are an increasing problem in a more eutrophic world. It is still a challenge to fully understand the influence of cyanobacteria on the interactions between predator and prey at higher trophic levels. The present study was mainly undertaken to understand the inducible anti-predator responses of cladocerans while using cyanobacteria as part of food. Specifically speaking, we focused on the anti-predator strategies of Ceriodaphnia cornuta in response to different predators (fish and Chaoborus larvae) under food with different proportions of Microcystis aeruginosa. The morphological (i.e., body size and the induction of horns) and life history traits (e.g., time to first reproduction, offspring number, and survival time) responses were measured under different proportions of M. aeruginosa (i.e., 0%, 20%, 40%, 60%, 80%, and 100%). Our results showed that both the life history and the inducible anti-predator responses of C. cornuta were significantly affected by different concentrations of M. aeruginosa. Specifically, lower concentrations of Microcystis (20%–60%) can significantly promote the horns induction under Chaoborus predation risks, and higher Microcystis concentrations (60%–100%) tend to enhance reproduction in response to fish predation risks, such as larger body size, decreased time to first reproduction, and increased total offspring number. Additionally, an increasing concentration of M. aeruginosa decreased the ability of C. cornuta to reverse horns when predation risks removed. Our findings indicated that cyanobacteria affecting life history traits and the subsequent indirect effects on anti-predator responses in cladocerans could impact the interactions between predator and prey at higher trophic levels and may consequently contribute to shaping the structure of the community in a cyanobacteria bloom area.
显示更多 [+] 显示较少 [-]A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste 全文
2020
Urbanek, Aneta K. | Rybak, Justyna | Wrobel, Magdalena | Leluk, Karol | Mirończuk, Aleksandra M.
Recently it was demonstrated that mealworm (Tenebrio molitor) larvae consume and biodegrade polystyrene. Thus, in this study a breeding investigation with various types of polystyrene was performed to follow the changes in the gut microbiome diversity. Polystyrene used for packaging purposes (PSp) and expanded polystyrene (EPS) were perceived as more favorable and attacked more frequently by mealworms compared to raw polystyrene (PS) and material commercially available for parcels (PSp). Although our studies showed that larvae could bite and chew selected materials, they are not able to degrade and use them for consumption purposes. In a next-generation sequencing experiment, among all samples, seven classes, Gammaproteobacteria, Bacilli, Clostridia, Acidobacteria, Actinobacteria, Alphaproteobacteria and Flavobacteria, were indicated as the most abundant, whereas the predominant genera were Enterobacter, Lactococcus and Enterococcus. Additionally, we isolated three bacteria strains able to use diverse types of bioplastic as a sole carbon source. The strains with biodegradable activity against bioplastic were identified as species of the genera Klebsiella, Pseudomonas and Serratia. The presence of a bacterial strain able to degrade bioplastic may suggest a potential niche for further investigations.
显示更多 [+] 显示较少 [-]Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota 全文
2018
Cai, Minmin | Ma, Shiteng | Hu, Ruiqi | Tomberlin, Jeffery K. | Yu, Chan | Huang, Yongping | Zhan, Shuai | Li, Wu | Zheng, Longyu | Yu, Ziniu | Zhang, Jibin
Antibiotics can effectively protect livestock from pathogen infection, but residual antibiotics in manure bring risks to ecosystems and public health. Here, we demonstrated that black soldier fly larvae (BSFL) could provide an environmentally friendly manure treatment based on their ability to effectively and rapidly degrade tetracycline (TC). Investigation of the biological mechanisms and degradation pathways of TC by BSFL indicated that nearly 97% of TC was degraded within 12 days in a non-sterile BSFL treatment system, which is up to 1.6-fold faster than that achieved by normal composting. Our results showed that rapid TC-degradation was largely carried out by the intestinal microbiota of the larvae, which doubled the TC-degradation rates compared to those achieved in sterile BSFL systems. This conclusion was further supported by highly-efficient TC-biodegradation both in vivo and in vitro by four larval intestinal isolates. Moreover, detailed microbiome analysis indicated that intestinal bacterial and fungal communities were modified along with significantly increased tet gene copy number in the gut, providing the means to tolerate and degrade TC. Through analysis of TC degradation in vitro, four possible biodegradation products, two hydrolysis products and three conceivable inactivation products were identified, which suggested TC degradation reactions including hydrolysis, oxygenation, deamination, demethylation, ring-cleavage, modification, etc. In conclusion, our studies suggested an estimation of the fate of TC antibiotics in manure treatment by BSFL colonized by gut microbes. These results may provide a strategy for accelerating the degradation of antibiotics by adjusting the intestinal microbiota of BSFL.
显示更多 [+] 显示较少 [-]Disruption of trophic interactions involving the heather beetle by atmospheric nitrogen deposition 全文
2016
Taboada, Angela | Marcos, Elena | Calvó, Leonor
Elevated nitrogen (N) deposition impacts the structure and functioning of heathland ecosystems across Europe. Calluna plants under high N-inputs are very sensitive to secondary stress factors, including defoliation attacks by the heather beetle. These attacks result in serious damage or death of Calluna, its rapid replacement by grasses, and the subsequent loss of heathland. We know very little about the mechanisms that control the populations and trigger outbreaks of the heather beetle, impeding proper management measures to mitigate the damage. We investigated the effects of N deposition on the relationships between the heather beetle, its host plant, and two arthropod predators at building (rejuvenated through fire) and mature heathlands. The study combines field manipulation experiments simulating a range of N deposition rates (0, 1, 2, 5 g N m−2 year−1 for 2 years, and 5.6 g N m−2 year−1 for 10 years), and food-choice laboratory experiments testing the preferences of adults and larvae of the heather beetle for N-treated Calluna plants, and the preferences of predators for larvae grown on plants with different N-content. The larvae of the heather beetle achieved the highest abundances after the long-term (10-year) addition of N at mature Calluna plots in the field. Contrary to the adults, the larvae foraged preferentially on the most N-rich Calluna shoots under laboratory conditions. Predators showed no aggregative numerical responses to the accumulation of heather beetle larvae at high N-input experimental plots. During the feeding trials, predators consumed a small number of larvae, both in total and per individual, and systematically avoided eating the larvae reared on high-N Calluna shoots. Our study showed that the most severe defoliation damage by the heather beetle is inflicted at the larval stage under prolonged availability of high-N inputs, and that arthropod predators might not act as effective regulators of the beetle's populations.
显示更多 [+] 显示较少 [-]Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus 全文
2012
Le Jeune, Anne-Hélène | Bourdiol, Floriane | Aldamman, Lama | Perron, Tania | Amyot, Marc | Pinel-Alloul, Bernadette
MeHg biomagnification by the phantom midge Chaoborus in relation to MeHg concentrations in their prey and its migratory behavior was investigated in two Canadian Precambrian Shield lakes. Three Chaoborus species with contrasted migratory behavior were collected in a fishless and a fish-inhabited lake. All species accumulated MeHg through their ontogenic development. In the lake inhabited by fish, all instars of Chaoborus punctipennis displayed a marked migratory behavior and were unable to biomagnify MeHg, whereas in the fishless lake, Chaoborus americanus and Chaoborus trivittatus biomagnified MeHg. Reduced biomagnification capacity of C. trivittatus, the coexisting species living with C. americanus, was also ascribed to a progressive vertical segregation with age. Growth dilution, amount and type of prey items or trophic position could not explain the different patterns of biomagnification. Our findings demonstrate that the most common invertebrate predator of temperate planktonic food webs can biomagnify mercury, contrarily to previous reports.
显示更多 [+] 显示较少 [-]Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste 全文
2020
Przemieniecki, Sebastian W. | Kosewska, Agnieszka | Ciesielski, Sławomir | Kosewska, Olga
Recent studies have demonstrated the ability of mealworm (Tenebrio molitor) for plastic degradation. This study is focused on changes in microbiome structure depending on diets. Microbial community obtained from oat and cellulose diet formed similar group, two kinds of polyethylene formed another group, while polystyrene diet showed the highest dissimilarity. The highest relative abundance of bacteria colonizing gut was in PE-oxodegradable feeding, nevertheless all applied diets were higher in comparison to oat. Dominant phyla consisted of Proteobacteria, Bacteroides, Firmicutes and Actinobacteria, however after PS feeding frequency in Planctomycetes and Nitrospirae increased. The unique bacteria characteristic for cellulose diet belonged to Selenomonas, while Pantoea were characteristic for both polyethylene diets, Lactococcus and Elizabethkingia were unique for each plastic diet, and potential diazotropic bacteria were characteristic for polystyrene diet (Agrobacterium, Nitrosomonas, Nitrospira).Enzymatic similarity between oatmeal and cellulose diets, was shown. All three plastics diet resulted in different activity in both, digestive tract and bacteria. The enzymes with the highest activity were included phosphatases, esterases, leucine arylamidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, chitinase, α-mannosidase and α-fucosidase. The activity of digestive tract was stronger than cultured gut bacteria. In addition to known polyethylene degradation methods, larvae may degrade polyethylene with esterase, cellulose and oatmeal waste activity is related with the activity of sugar-degrading enzymes, degradation of polystyrene with anaerobic processes and diazotrophs.
显示更多 [+] 显示较少 [-]Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees 全文
2020
Tesovnik, Tanja | Zorc, Minja | Ristanić, Marko | Glavinić, Uroš | Stevanović, Jevrosima | Narat, Mojca | Stanimirović, Zoran
During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival.
显示更多 [+] 显示较少 [-]Exposure to a microplastic mixture is altering the life traits and is causing deformities in the non-biting midge Chironomus riparius Meigen (1804) 全文
2020
Stanković, Jelena | Milošević, Djuradj | Savić-Zdraković, Dimitrija | Yalçın, Gülce | Yildiz, Dilvin | Beklioğlu, Meryem | Jovanović, Boris
The effect of microplastics (MP) exposure on the chironomid species Chironomus riparius Meigen, 1804 was investigated using the OECD sediment and water toxicity test. Chironomid larvae were exposed to an environmentally relevant low microplastics concentration (LC), a high microplastics concentration (HC) and a control (C). The LC was 0.007 g m⁻² on the water surface + 2 g m⁻³ in the water column + 8 g m⁻² in the sediment, and the HC was 10 X higher than this for each exposure. The size of the majority of the manufactured microplastic pellets varied between 20 and 100 μm. The MP mixture consisted of: polyethylene-terephtalate (PET), polystyrene (PS), polyvinyl-chloride (PVC) and polyamide (PA) in a ratio of 45%: 15%: 20%: 20%, respectively, for the sediment exposure; 100% polyethylene for the water column exposure; and 50% polyethylene: 50% polypropylene for the water surface exposure. Different endpoints were monitored, including morphological changes in the mandibles and mentums of 4th instar larvae, morphological changes in the wings, mortality, emergence ratio, and developmental time. A geometric morphometric analysis showed a tendency toward widening of the wings, elongation of the mentums and changing the shape of the mandibles in specimens exposed to both concentrations of microplastics. The development time of C. riparius was significantly prolonged by the MP treatment: 13.8 ± 0.5; 14.4 ± 0.6; and 15.3 ± 0.4 days (mean ± SD) in the C, LC, and HC, respectively. This study indicates that even environmentally relevant concentrations of MP mixture have a negative influence on C. riparius, especially at the larval stage.
显示更多 [+] 显示较少 [-]