细化搜索
结果 1-10 的 52
Combined exposure of lead and high-fat diet enhanced cognitive decline via interacting with CREB-BDNF signaling in male rats
2022
Liu, Rundong | Bai, Lin | Liu, Mengchen | Wang, Ruike | Wu, Yingying | Li, Qiong | Ba, Yue | Zhang, Huizhen | Zhou, Guoyu | Yu, Fangfang | Huang, Hui
The health risks to populations induced by lead (Pb) and high-fat diets (HFD) have become a global public health problem. Pb and HFD often co-exist and are co-occurring risk factors for cognitive impairment. This study investigates effect of combined Pb and HFD on cognitive function, and explores the underlying mechanisms in terms of regulatory components of synaptic plasticity and insulin signaling pathway. We showed that the co-exposure of Pb and HFD further increased blood Pb levels, caused body weight loss and dyslipidemia. The results from Morris water maze (MWM) test and Nissl staining disclosed that Pb and HFD each contributed to cognitive deficits and neuronal damage and combined exposure enhanced this toxic injury. Pb and HFD decreased the levels of synapsin-1, GAP-43 and PSD-95 protein related to synaptic properties and SIRT1, NMDARs, phosphorylated CREB and BDNF related to synaptic plasticity regulatory, and these decreases was greater when combined exposure. Additionally, we revealed that Pb and HFD promoted IRS-1 phosphorylation and subsequently reduced downstream PI3K-Akt kinases phosphorylation in hippocampus and cortex of rats, and this process was aggravated when co-exposure. Collectively, our data suggested that combined exposure of Pb and HFD enhanced cognitive deficits, pointing to additive effects in rats than the individual stress effects related to multiple signaling pathways with CREB-BDNF signaling as the hub. This study emphasizes the need to evaluate the effects of mixed exposures on brain function in realistic environment and to better inform prevention of neurological disorders via modulating central pathway, such as CREB/BDNF signaling.
显示更多 [+] 显示较少 [-]High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort
2022
Tan, Youran | Barr, Dana Boyd | Ryan, P Barry | Fedirko, Veronika | Sarnat, Jeremy A. | Gaskins, Audrey J. | Chang, Che-Jung | Tang, Ziyin | Marsit, Carmen J. | Corwin, Elizabeth J. | Jones, Dean P. | Dunlop, Anne L. | Liang, Donghai
Exposure to tobacco smoke during pregnancy has been associated with a series of adverse reproductive outcomes; however, the underlying molecular mechanisms are not well-established. We conducted an untargeted metabolome-wide association study to identify the metabolic perturbations and molecular mechanisms underlying the association between cotinine, a widely used biomarker of tobacco exposure, and adverse birth outcomes. We collected early and late pregnancy urine samples for cotinine measurement and serum samples for high-resolution metabolomics (HRM) profiling from 105 pregnant women from the Atlanta African American Maternal-Child cohort (2014–2016). Maternal metabolome perturbations mediating prenatal tobacco smoke exposure and adverse birth outcomes were assessed by an untargeted HRM workflow using generalized linear models, followed by pathway enrichment analysis and chemical annotation, with a meet-in-the-middle approach. The median maternal urinary cotinine concentrations were 5.93 μg/g creatinine and 3.69 μg/g creatinine in early and late pregnancy, respectively. In total, 16,481 and 13,043 metabolic features were identified in serum samples at each visit from positive and negative electrospray ionization modes, respectively. Twelve metabolic pathways were found to be associated with both cotinine concentrations and adverse birth outcomes during early and late pregnancy, including tryptophan, histidine, urea cycle, arginine, and proline metabolism. We confirmed 47 metabolites associated with cotinine levels, preterm birth, and shorter gestational age, including glutamate, serine, choline, and taurine, which are closely involved in endogenous inflammation, vascular reactivity, and lipid peroxidation processes. The metabolic perturbations associated with cotinine levels were related to inflammation, oxidative stress, placental vascularization, and insulin action, which could contribute to shorter gestations. The findings will support the further understanding of potential internal responses in association with tobacco smoke exposures, especially among African American women who are disproportionately exposed to high tobacco smoke and experience higher rates of adverse birth outcomes.
显示更多 [+] 显示较少 [-]Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice
2021
Yan, Jin | Wang, Dezhen | Meng, Zhiyuan | Yan, Sen | Teng, Miaomiao | Jia, Ming | Li, Ruisheng | Tian, Sinuo | Weiss, Carsten | Zhou, Zhiqiang | Zhu, Wentao
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
显示更多 [+] 显示较少 [-]Chronic exposure to PPCPs mixture at environmentally relevant concentrations (ERCs) altered carbohydrate and lipid metabolism through gut and liver toxicity in zebrafish
2021
Hamid, Naima | Junaid, Muhammad | Wang, Yan | Pu, Shi-Ya | Jia, Pan-Pan | Pei, De-Sheng
Pharmaceuticals and personal care products (PPCPs) have been widely distributed and posed ecotoxicological risks in the aquatic environment. This study aims to evaluate the toxic effects after chronic exposure to PPCPs mixture at the environment relevant concentrations (ERCs). Our results indicated that PPCPs induced serious metabolic effects by disturbing the carbohydrate and lipid metabolism pathways. Chronic exposure caused a significant reduction in the hepatosomatic index (HSI), the gut weight ratios, and histological alterations in liver and gut tissues. Further, exposure to the combined PPCPs disrupted the carbohydrate metabolism via significant upregulation of hk1, gk, pck1, and insr genes. The lipid metabolism was affected with higher ppars expression levels that increased the fatty acid β-oxidation and ultimately decreased the lipidogenesis. Moreover, the altered responses of the insulin growth factor (IGF) pathway more in male gut tissue than that of female revealed sex-dependent disturbance in the gut homeostasis induced by PPCPs mixture. In conclusion, chronic exposure to PPCPs mixtures at ERCs can induce developmental effects and metabolic dysfunction in both male and female fish. The consumption and environmental disposal of these PPCPs should be regulated to ensure ecological health and environmental safety.
显示更多 [+] 显示较少 [-]Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches
2019
Batra, Twinkle | Malik, Indu | Kumar, Vinod
Light at night (LAN) negatively impacts the behaviour and physiology; however, very little is known about molecular correlates of LAN-induced effects in diurnal animals. Here, we assessed LAN-induced effects on behaviour and physiology, and examined molecular changes in the liver of diurnal zebra finches (Taeniopygia guttata). Birds were exposed to dim LAN (dLAN: 12L = 150 lux: 12D = 5 lux), with controls on 12L (150 lux): 12D (0 lux). dLAN altered daily activity-rest and eating patterns, induced nocturnal eating and caused body fattening and weight gain, and reduced nocturnal melatonin levels. Concomitant increased nighttime glucose levels, decreased daytime thyroxine and triglycerides levels, and hepatic lipid accumulation suggested the impairment of metabolism under dLAN. Transcriptional assays evidenced dLAN-induced negative effects on metabolism in the liver, the site of metabolic homeostasis. Particularly, increased g6pc and foxo1 mRNA expressions suggested an enhanced gluconeogenesis, while increased egr1 and star expressions suggested enhanced cholesterol biosynthesis and lipid metabolism, respectively. Similarly, overexpressed sirt1 indicated protection from the metabolic damage due to elevated gluconeogenesis and cholesterol biosynthesis under dLAN. However, no effect on genes involved in lipogenesis (fasn) and insulin signalling pathway (socs3 and insig1) might indicate for the post transcriptional/post translational modification effects or the involvement of other genetic pathways in LAN-induced effects. We also found daily rhythm in the hepatic expression of selected clock and clock-controlled genes (per2, bmal1 and reverb-beta), with an elevated mesor and amplitude of per2 oscillation, suggesting a role of per2 in the liver metabolism. These results demonstrate dLAN-induced negative effects on the behaviour and physiology, and provide molecular insights into metabolic risks of the exposure to illuminated nights to diurnal animals including humans in an urban setting.
显示更多 [+] 显示较少 [-]Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults
2022
Ye, Zi | Liang, Ruyi | Wang, Bin | Yu, Linling | Liu, Wei | Wang, Xing | Xiao, Lili | Ma, Jixuan | Zhou, Min | Chen, Weihong
The link between zinc exposure and glucose metabolism or the development of type 2 diabetes (T2D) is controversial, and underlying mechanisms are unclear. This study aimed to explore the associations of zinc exposure with glucose-insulin homeostasis traits and the long-term effects of zinc on the development of T2D, and further to estimate the potential roles of inflammation and oxidative damage in such relationships. We investigated 3890 urban adults from the Wuhan-Zhuhai cohort, and followed up every three years. Mixed linear model was applied to estimate dose-response associations between urinary zinc and glycemia traits [fasting plasma insulin (FPI), fasting plasma glucose (FPG), insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR), and β-cell dysfunction (homeostasis model assessment of β-cell function, HOMA-B)], as well as zinc and biomarkers for systemic inflammation (C-reactive protein) and oxidative damage (8-isoprostane and 8-hydroxy-2′-deoxyguanosine). Logistic regression model and Cox regression model were conducted to evaluate the relationships between urinary zinc and prevalence and incidence of T2D, respectively. We further performed mediation analysis to assess the roles of inflammation and oxidative damage biomarkers in above associations. At baseline, we observed significant dose-response relationships of elevated urinary zinc with increased FPI, FPG, HOMA-IR, and T2D prevalence and decreased HOMA-B, and such associations could be strengthened by increased C-reactive protein, 8-isoprostane, and 8-hydroxy-2′-deoxyguanosine. Elevated C-reactive protein significantly mediated 9.09% and 17.67% of the zinc-related FPG and HOMA-IR increments, respectively. In longitudinal analysis, a significantly positive association between urinary zinc and T2D incidence was observed among subjects with persistent high urinary zinc levels when compared with those with persistent low zinc levels. Our results suggested that high levels of zinc exposure adversely affected on glucose-insulin homeostasis and further contributed to increased risk of T2D cross-sectionally and longitudinally. Moreover, inflammatory response might play an important role in zinc-related glucose metabolic disorder.
显示更多 [+] 显示较少 [-]3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster
2022
Wang, Yahong | Jiang, Zhihao | Zhang, Lu | Zhang, Ziyan | Liao, Yanyan | Cai, Peng
With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m², 1 W/m² and 10 W/m². We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.
显示更多 [+] 显示较少 [-]Maternal prenatal urinary bisphenol A level and child cardio-metabolic risk factors: A prospective cohort study
2020
Ouyang, Fengxiu | Zhang, Guang-Hui | Du, Kun | Shen, Lixiao | Ma, Rui | Wang, Xia | Wang, Xiaobin | Zhang, Jun
Exposure to endocrine disrupting chemicals during the first 1000 days of life may have long-lasting adverse effects on cardio-metabolic risk in later life. This study aimed to examine the associations between maternal prenatal Bisphenol A (BPA) exposure and child cardio-metabolic risk factors at age 2 years in a prospective cohort. During 2012–2013, 218 pregnant women were enrolled at late pregnancy from Shanghai, China. Urinary BPA concentration was measured in prenatal and child 2-year spot urine samples, and classified into high, medium and low tertiles. Child adiposity anthropometric measurements, random morning plasma glucose, serum insulin, and lipids (high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride), systolic (SBP) and diastolic blood pressure (DBP) were measured. Linear regression was used to evaluate the associations between prenatal BPA and each of the cardio-metabolic risk factors in boys and girls, respectively, adjusting for pertinent prenatal, perinatal and postnatal factors. BPA was detectable (>0.1 μg/L) in 98.2% of mothers prenatally and 99.4% of children at age 2 years. Compared to those with low prenatal BPA, mean SBP was 7.0 (95%CI: 2.9–11.2) mmHg higher, and DBP was 4.4 (95%CI: 1.2–7.5) mmHg higher in girls with high prenatal BPA levels, but these associations were not found in boys. In boys, medium maternal prenatal BPA level was associated with 0.36 (95% CI: 0.04–0.68) mmol/L higher plasma glucose. No associations were found between prenatal BPA and child BMI, skinfold thicknesses, serum lipids, or insulin in either girls or boys. There were no associations between concurrent child urinary BPA and cardio-metabolic risk factors. These results support that BPA exposure during prenatal period, susceptible time for fetal development, may be associated with increase in child BP and plasma glucose in a sex-specific manner. Further independent cohort studies are needed to confirm the findings.
显示更多 [+] 显示较少 [-]Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera)
2020
Fent, Karl | Schmid, Michael | Christen, Verena
Cypermethrin is a frequently used insecticide in agriculture and households but its chronic and molecular effects are poorly known are . Here we describe effects of sublethal cypermethrin exposure on the global transcriptome in the brain of honey bees determined by RNA-sequencing. Exposure for 48 h to 0.3 ng/bee cypermethrin (3 ng/mL sucrose solution) causes 38 differentially expressed genes (DEGs), of which 29 are up-regulated and 9 down-regulated. Exposure to 3 ng/bee causes differential expression of 265 DEGs (209 up-, 56 down-regulated). Among the 24 DEGs shared by both concentrations are genes encoding muscular structure, muscular processes and esterase B1. Functional analysis (GO term analysis) confirms the enrichment of muscular development, structure and function among the 89 and 35 significantly altered GO terms at the low and high concentration, respectively. Up-regulation of nine DEGs determined by RT-qPCR showed a good correlation with RNA-sequence data. Among them are genes including esterase B1, titin, twitchin, mucin-19, insulin like growth factor binding protein, golgin like protein and helix loop protein. Our study demonstrates for the first time molecular effects of cypermethrin at environmental concentrations, which include expressional induction of genes encoding muscular and cellular processes and metabolism enzymes. Further studies should demonstrate the physiological consequences in bees.
显示更多 [+] 显示较少 [-]Association of serum levels of 4-tertiary-octylphenol with cardiovascular risk factors and carotid intima-media thickness in adolescents and young adults
2019
Lin, Chien-Yu | Hwang, Yi-Ting | Chen, Pau-Chung | Sung, Fung-Chang | Su, Ta-Chen
In the family of alkylphenolic compounds, 4-tertiary-Octylphenol (4-t-OP) is extensively used in many products. In animal and in vitro studies, 4-t-OP exposure has been linked to cardiovascular disease (CVD) risk factors; however, there are no previous human epidemiological studies. In this study, 886 subjects were recruited from a cohort of Taiwanese adolescents and young adults to study the relationship between serum levels of 4-t-OP, CVD risk factors, and common carotid artery intima-media thickness (CIMT). The geometric mean (SD) 4-t-OP concentration was 32.52 (1.71) ng/mL. We found that serum levels of 4-t-OP were negatively associated with markers of glucose homeostasis (insulin, homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β)), z score of body mass index (BMI z score) and CIMT but were positively associated with lipid profiles (high density lipoprotein cholesterol (HDL-C), Apolipoprotein A1). A one-unit elevation in natural log-transformed 4-t-OP (ng/mL) was negatively correlated with CIMT (mm) (β = −0.029, SE = 0.003, P < 0.001) in multiple linear regression analyses. The relationship between 4-t-OP and CIMT remained the same in all subgroups or if bisphenol A (BPA) was considered a covariate. In this study, we observed that higher levels of 4-t-OP levels were negatively correlated with markers of glucose homeostasis, BMI z score, and CIMT; positively correlated with lipid profiles (HDL-C and apolipoprotein A) in this cohort. Future research on exposure to 4-t-OP and CVD risk factors is warranted.
显示更多 [+] 显示较少 [-]