细化搜索
结果 1-10 的 285
Inventory of riverine dissolved organic carbon in the Bohai Rim
2022
Sun, Cece | Liu, Jun | Li, Menglu | Zang, Jiaye | Wang, Lu | Wu, Wentao | Zhang, Aijun | Wang, Junjie | Ran, Xiangbin
Riverine carbon (C) composition and export are closely related to changes in the coastal environment and climate. Excessive C inputs from rivers to seas and their subsequent decomposition could result in harmful algal blooms and ecosystem degradation in the coastal sea. In this study, we explored the C transportation and composition in the 24 major rivers of the Bohai Sea (BS) Rim based on the investigation of dissolved organic carbon (DOC), carbon stable isotopes (δ¹³CDOC) and chromophoric dissolved organic matter (CDOM). The results showed that the riverine DOC concentrations were high (10.6 ± 6.04 mg/L) in the BS Rim compared with the DOC levels in the main rivers in Eastern China (4.98 ± 2.45 mg/L). The δ¹³CDOC ranged from −28.29‰ to −25.32‰ in the rivers of the BS Rim, suggesting that the DOC mainly originated from riverine plankton, soil organic matter mainly induced by C3 plants, and sewage. The excitation-emission matrix fluorescence spectroscopy of the CDOM indicated that a soluble, microbial by product-like material accounted for the largest proportion (approximately 40%) of CDOM in these rivers and that CDOM mainly originated from autochthonous riverine sources with high protein-like components. The rivers in the BS Rim transported approximately 0.55 Tg C of DOC to the BS each year, with more than 70% of reactive C based on the CDOM composition. The DOC yields in terms of unit drainage area transported from the small rivers to the BS were higher compared to those of the larger rivers in the world, which indicated that the small rivers in the Bohai Rim could be an important source of the C in the BS. This study would enrich our understanding of environmental evolution in coastal areas with numerous small rivers.
显示更多 [+] 显示较少 [-]Mitigation potential of black carbon emissions from on-road vehicles in China
2021
Zhang, Shaojun | Wu, Xiaomeng | Zheng, Xuan | Wen, Yifan | Wu, Ye
Black carbon (BC) is the most potent light-absorbing component of particulate matter and can have a significant warming impact. On-road vehicles are a major source of BC and a significant contributor to global warming. This paper establishes an updated inventory to quantify the mitigation potential of efforts to control BC emissions from on-road transportation in China. The total emissions of BC from on-road vehicles in China were 152.1 thousand tons in 2017. Heavy-duty diesel fleets accounted for a large percentage of emissions, whereas light-duty gasoline fleets presented a gradually increasing trend of emissions. Historically, comprehensive control policies for on-road vehicle emissions have achieved substantial BC reductions, with a 45% decrease in 2017 compared to 2000. With the implementation of stringent control policies and the development of advanced control technologies, BC emissions from the on-road sector may have a greater reduction potential in the future. By 2035, three various future scenarios representing different stringency levels of emission controls will reduce BC emissions by 58%, 90%, and 93% relative to 2017. The major benefits in reducing BC emissions result from more stringent emission standards and the accelerated retirement of older heavy-duty diesel vehicles. The shorter lifetime of BC than that of CO₂ implies that the mitigation of BC emissions would offer an important opportunity to contribute to alleviating global warming in the short term. Our assessment reveals that in 2035, the most stringent scenario, Scenario PC3, could deliver a CO₂-equivalent emission reduction on a 20-year scale of 234.2 (GWP₂₀₋yᵣ) million tons compared with the NAP Scenario, which is equivalent to reducing the oil consumption in China’s transportation sector by nearly 20% from a climate impact perspective.
显示更多 [+] 显示较少 [-]A review on methodology in O3-NOx-VOC sensitivity study
2021
Liu, Chunqiong | Shi, Kai
Gaining insight into the response of surface ozone (O₃) formation to its precursors plays an important role in the policy-making of O₃ pollution control. However, the real atmosphere is an open and dissipative system, and its complexity poses a great challenge to the study of nonlinear relations between O₃ and its precursors. At present, model-based methods based on reductionism try to restore the real atmospheric photochemical system, by coupling meteorological model and chemical transport model in temporal and spatial resolution completely. Nevertheless, large inconsistencies between predictions and true values still exist, due to the great uncertainty originated from emission inventory, photochemical reaction mechanism and meteorological factors. Recently, based on field observations, some nonlinear methods have successfully revealed the complex emergent properties (long-term persistence, multi-fractal, etc) in coupling correlation between O₃ and its precursors at different time scales. The emergent properties are closely associated with the intrinsic dynamics of atmospheric photochemical system. Taking them into account when building O₃ prediction model, is helpful to reduce the uncertainty in the results. Nonlinear methods (fractal, chaos, etc) based on holism can give new insights into the nonlinear relations between O₃ and its precursors. Changes of thinking models in methodology are expected to improve the precision of forecasting O₃ concentration. This paper has reviewed the advances of different methods for studying the sensitivity of O₃ formation to its precursors during the past few decades. This review highlights that it is necessary to incorporate the emergent properties obtained by nonlinear methods into the modern models, for assessing O₃ formation under combined air pollution environment more accurately. Moreover, the scaling property of coupling correlation detected in the real observations of O₃ and its precursors could be used to test and improve the simulation performance of modern models.
显示更多 [+] 显示较少 [-]Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China
2021
Zhao, Wenxin | Zhao, Yu | Ma, Mingrui | Chang, Ming | Duan, Lei
The rapid development of China's industrial economy and implementation of air pollution controls have led to great changes in sulfur (S), nitrogen (N) and base cation (BC) deposition in the past three decades. We estimated China's anthropogenic BC emissions and simulated BC deposition from 1985 to 2015 with a five-year interval using a multilayer Eulerian model. Deposition of S and N from 2000 to 2015 with a five-year interval was simulated with the EMEP MSC-W model and the Multi-resolution Emission Inventory of China (MEIC). The critical load (CL) and its exceedance were then calculated to evaluate the potential long-term acidification risks. From 1985 to 2005, the BC deposition in China was estimated to have increased by 16 % and then decreased by 33 % till 2015. S deposition was simulated to increase by 49 % from 2000 to 2005 and then decrease by 44 % in 2015, while N deposition increased by 32 % from 2000 to 2010 with a limited reduction afterward. The maximum CL of S was found to increase in 67 % of mainland China areas from 1985 to 2005 and to decline in 55 % of the areas from 2005 to 2015, attributed largely to the changed BC deposition. Consistent with the progress of national controls on SO₂ and NOX emissions, the CL exceedance of S increased from 2.9 to 4.6 Mt during 2000–2005 and then decreased to 2.5 Mt in 2015, while that of N increased from 0.4 in 2000 to 1.2 Mt in 2010 and then decreased to 1.1 Mt in 2015. The reduced BC deposition due to particle emission controls partially offset the benefit of SO₂ control on acidification risk reduction in the past decade. It demonstrates the need for a comprehensive strategy for multi-pollutant control against soil acidification.
显示更多 [+] 显示较少 [-]Contribution of mulch film to microplastics in agricultural soil and surface water in China
2021
Ren, Shu-Yan | Kong, Si-Fang | Ni, Hong-Gang
Agricultural mulch film (AMF) is deemed an important source of microplastics (MPs) in agricultural soil (AS). However, quantitating the contribution of AMFs to MPs in farmland soil and surface water remains a considerable challenge to date. In the present study, a basic framework was developed to address these concerns. First, the concentrations of MPs in soil derived from AMF abrasion (CMP) and the total MPs from all sources in AS (CTMP) were measured. Then, the ratios of CMP to CTMP, i.e., the contribution of AMFs to MPs in AS, were calculated. The contribution of AMFs to MPs in surface water via soil erosion was calculated based on CTMP values, the ratios of CMP to CTMP, soil erosion intensities (SEIs), and farmland areas. Furthermore, the potential contribution of soil erosion to MPs in the ocean was estimated. In China, the inventory of MPs in surface AS in 2018 ranged from 4.9 × 10⁶ to 1.0 × 10⁷ tons according to our results. AMFs contributed 10%–30% of the CTMP with certainties of 60–95%. Assuming that all MPs in AS can be exhaustively transferred to surface water via soil erosion, the national mass transfer amount of MPs (MTTMP) from AS to surface water reached 1.2 × 10⁵−2.2 × 10⁵ tons (∼2% of the inventory of MPs in the AS of China); the fluxes of MPs into the ocean from AS were 3.4 × 10⁴−6.6 × 10⁴ tons, assuming that all MPs in the AS of coastal provinces enter the ocean. It is likely that AMFs contributed 10%–30% MTTMP and fluxes of MPs to the ocean according to the ratios of CMP to CTMP. Apparently, approximately 30% of the national MTTMP (i.e., the rate of MP flux to the ocean to MTTMP) was input to the ocean.
显示更多 [+] 显示较少 [-]Transboundary transport of ozone pollution to a US border region: A case study of Yuma
2021
Qu, Zhen | Wu, Dien | Henze, Daven K. | Li, Yi | Sonenberg, Mike | Mao, Feng
High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOₓ, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOₓ emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1–4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.
显示更多 [+] 显示较少 [-]Study on the real-world emissions of rural vehicles on different road types
2021
Zhang, Shihai | Peng, Di | Li, Yi | Zu, Lei | Fu, Mingliang | Yin, Hang | Ding, Yan
To better understand the real-world emissions of rural vehicles (RVs) in China, 8 China II RVs and 18 China III RVs were tested on a provincial road, rural road and farm road using a portable emissions measurement system. The results are illustrated in contour maps of the speed, acceleration and emission rates and show that CO, HC, NOx and PM emissions differ for the three road types; however, the peak emission points all occur on the provincial road. The average CO, HC, NOx and PM emission factors based on distance for the China II RVs are 9.21, 4.05, 1.68 and 2.58 times higher, respectively, than those of the China III RVs. However, the average NOx emission factors of the China II and III RVs are 2.21 and 1.65 times higher than the corresponding recommended values of national emission inventory guideline, resulting in underestimation of overall RVs’ emissions. Distance-based emission factors of four pollutants ranked from high to low are farm road > rural road > provincial road. In contrast to the average emission factors of the China II RVs on the three road types, those of the China III RVs are significantly less in terms of distance and fuel consumption. The results of other researchers differ from those in this study: the CO emission factor of the China II RVs is 2.12 times higher than that of the China II light-duty diesel vehicles (LDDVs). The PM emission factor of the China III RVs is 2.67 times higher than that of the China III LDDVs. The NOx emission factors of the China II and III RVs are similar to those of the corresponding China II and III LDDVs. Our research increases the understanding of real-world emissions of RVs and can act as great references for policy makers developing RV emission baselines.
显示更多 [+] 显示较少 [-]Fugitive emissions of polycyclic aromatic compounds from an oil sands tailings pond based on fugacity and inverse dispersion flux calculations
2021
Moradi, Maryam | You, Yuan | Hung, Hayley | Li, James | Park, Richard | Alexandrou, Nick | Moussa, Samar G. | Jantunen, Liisa | Robitaille, Rachelle | Staebler, Ralf
Alberta’s oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the “pond” and towards the pond (“non-pond”) directions separately. Mean ∑₂₇PACs in air from the “pond” direction was greater than the “non-pond” direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.
显示更多 [+] 显示较少 [-]Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018
2021
Bae, Minah | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Jhoon | Kim, Soontae
In this study, we examined the change rates of PM₂.₅ concentrations, aerosol optical depth (AOD), and the concentrations of PM₂.₅ precursors, such as SO₂ and NO₂, in China and South Korea using surface and satellite observations from 2015 to 2018. To quantify the impacts of the emissions and meteorology on the concentration changes, we performed a series of air quality simulations with year-specific meteorology and a fixed anthropogenic emissions inventory. The surface PM₂.₅ observations in China and South Korea decreased at rates of 9.1 and 4.3%/yr during the study period, respectively. The AODs from Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) also decreased faster over China than the AODs over South Korea. For the PM₂.₅ decrease in China, the emission impact was more significant (73%) than the meteorology impact (27%). On the contrary, in South Korea, the emissions and meteorology impacts on PM₂.₅ reductions were similar (51% vs 49%). The SO₂ concentration over China in 2018 significantly reduced to approximately half of the level in 2015. In turn, the sulfate concentration in Baengnyeong (BN), located in a downwind pathway from China to South Korea, decreased at a rate of 0.79%/month. However, the nitrate concentration in BN showed an increasing trend due to the non-linear chemical reactions among sulfate-nitrate-ammonium. The increased nitrate compensated for the reduced PM₂.₅ concentration from the sulfate decrease at BN. Additionally, the number of high (>50 μg/m³) PM₂.₅ concentration days continuously decreased in China, but the number in South Korea increased. It is noted that emission reductions in an upwind area do not guarantee corresponding air quality improvement in the downwind area when complex secondary aerosol formation processes, as well as spatiotemporal changes in meteorology, are involved in the transboundary transport of air pollutants.
显示更多 [+] 显示较少 [-]Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region
2021
Li, Jingyi | Zhang, Na | Wang, Peng | Choi, Minsu | Ying, Qi | Guo, Song | Lu, Keding | Qiu, Xionghui | Wang, Shuxiao | Hu, Min | Zhang, Yuanhang | Hu, Jianlin
Multiphase chemistry of chlorine is coupled into a 3D regional air quality model (CMAQv5.0.1) to investigate the impacts on the atmospheric oxidation capacity, ozone (O₃), as well as fine particulate matter (PM₂.₅) and its major components over the Yangtze River Delta (YRD) region. The developed model has significantly improved the simulated hydrochloric acid (HCl), particulate chloride (PCl), and hydroxyl (OH) and hydroperoxyl (HO₂) radicals. O₃ is enhanced in the high chlorine emission regions by up to 4% and depleted in the rest of the region. PM₂.₅ is enhanced by 2–6%, mostly due to the increases in PCl, ammonium, organic aerosols, and sulfate. Nitrate exhibits inhomogeneous variations, by up to 8% increase in Shanghai and 2–5% decrease in most of the domain. Radicals show different responses to the inclusion of the multiphase chlorine chemistry during the daytime and nighttime. Both OH and HO₂ are increased throughout the day, while nitrate radicals (NO₃) and organic peroxy radicals (RO₂) show an opposite pattern during the daytime and nighttime. Higher HCl and PCl emissions can further enhance the atmospheric oxidation capacity, O₃, and PM₂.₅. Therefore, the anthropogenic chlorine emission inventory must be carefully evaluated and constrained.
显示更多 [+] 显示较少 [-]