细化搜索
结果 1-10 的 434
Technical Design of Constructed Wetland unity for Municipal Wastewater Treatment and Reuse for a Green Space Irrigation: Case of the new City of Ouled Djellal –Algeria 全文
2022
Rokbane, Abdelmadjid | Debabeche, Mahmoud
This work investigates the possibility of using constructed wetland system for the management of municipal wastewaters with reuse strategies for the irrigation of landscapes in Ouled Djellal city of Biskra, Algeria. The design of this system was based on the characteristics (volume and physico-chemical properties) of wastewaters and the urban plan of the studied city. Results showed that studied effluent is easily biodegradable with COD/BOD5 of 1.84 (< 3), BOD5 (325 - 365 mg/L), COD (620-644 mg/L) and TSS (120-250mg/l). The peak of raw wastewater flow was found to be 32.4 m3 /h, which was used for the calculation of drip network for the landscape irrigation. The selected variant for the configuration of the CW system is HF-VF-HF, which occupies an area of 11.580 m2 and will reduce significantly the water pollution. The treated wastewater will be reused for the irrigation of landscapes via the dimensioned drip network. Results of this study showed that the proposed design for the system (treatment and reuse) would be effective in reducing pollution in the urban environment by ensuring possibility of the reuse of the treated water for irrigation. This gives also a great opportunity for using this strategy in small neighborhoods in other cities.
显示更多 [+] 显示较少 [-]Assessment of Salinity Hazard of Irrigation Water Quality in Monsoon Season of Batiaghata Upazila, Khulna District, Bangladesh and adaptation strategies 全文
2016
Shammi, Mashura | Karmakar, Bikash | Rahman, Md. | Islam, Md | Rahaman, Rashadur | Uddin, Khabir
Batiaghata Upazila, Khulna District in south-west coastal region of Bangladesh is the mostly saline affected area, where agriculture activities are mainly dependent on rainfall. 23 water samples from surface water and shallow tube well (STW) were collected in the monsoon season and analyzed for physico-chemical properties to classify them according to salinity hazard. Electrical Conductivity (EC) of both surface and groundwater samples were slightly higher than that of acceptable limit ( Ca2+ > Mg2+ > K+ in both surface and groundwater while the anions trend in both surface and groundwater of the study area were Cl¯ > SO42¯ > PO43¯. EC and TDS showed high positive correlation with Na+, K+ and Ca2+ with Cl¯ as confirmed from Correlation Matrix and Principal Component Analysis (PCA). Most of the STW water samples compared to the surface water had higher Soluble Sodium Percentage (SSP) values while Sodium Adsorption Ratio (SAR) indicated the surface water and ground water with low sodium hazard. The Kelly’s ratio of STW water is more subjected to sodium hazard compared to surface water in the study area.
显示更多 [+] 显示较少 [-]Assessment of the presence of metals and quality of water used for irrigation in Kwara State, Nigeria 全文
2017
Aliyu, Taiye | Balogun, Olusegun | Namani, Chineye | Olatinwo, Lateefat | Aliyu, Abubakar
In Nigeria irrigated agriculture is an important tool for economic growth, food security, and poverty reduction during dry periods of rain-fed agriculture. The concentration and composition of dissolved constituents in water determines its quality for irrigation use. Water quality studies strongly suggest that agriculture is a leading source of water quality problems, due to pesticides and other agro-inputs, widely used by farmers to improve agricultural productivity. Poor quality irrigation water would therefore obviously affect soil quality and crop productivity. This study was carried out in 2015 to assess the presence of metals and physical properties of water, used for irrigation in Kwara state, Nigeria. Samples were randomly collected from thirty irrigation sources in three senatorial zones of Kwara State. The samples were analyzed for the presence of metals and water quality parameters, using standard procedures. Results showed that the highest concentration of Sulphate (7.0mg/L), Nitrate (8.9mg/L), Sodium (31.6mg/L), Calcium (3.1mg/L), and Magnesium (0.7) ions were within acceptable limits. The Sodium Adsorption Ratio, an indicator for water suitability in agricultural irrigation as well as a standard diagnostic parameter for the sodicity hazard of a soil, was significantly the highest (22.7) in Kwara North. Results of the study point to the need for an effective irrigation water quality assessment to curb nonpoint source pollution that could be caused by improper use of chemicals and pesticides by farmers.
显示更多 [+] 显示较少 [-]A review on occurrence of emerging pollutants in waters of the MENA region 全文
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Little is known about the occurrence of emerging pollutants (EPs) in waters in the Middle East and North Africa (MENA) region despite the extensive use of low-quality water there. Available data dealing with the sources, occurrence and removal of EPs within the MENA region in different categories of water is collected, presented and analyzed in this literature review. According to the collected database, the occurrence and removal efficiency of EPs in the water matrix in the MENA region is available, respectively, for 13 and six countries of the 18 in total; no available data is registered for the rest. Altogether, 290 EPs have been observed in different water matrices across the MENA countries, stemming mainly from industrial effluents, agricultural practices, and discharge or reuse of treated wastewater (TWW). Pharmaceutical compounds figure among the most frequently reported compounds in wastewater, TWW, surface water, and drinking water. Nevertheless, pesticides are the most frequently detected pollutants in groundwater. Worryingly, 57 cases of EPs have been reported in different fresh and drinking waters, exceeding World Health Organization (WHO) and European Commission (EC) thresholds. Overall, pharmaceuticals, organic compounds, and pesticides are the most concerning EP groups. The review revealed the ineffectiveness of treatment processes used in the region to remove EPs. Negative removals of some EPs such as carbamazepine, erythromycin, and sulfamethoxazole were recorded, suggesting their possible accumulation or release during treatment. This underlines the need to set in place and strengthen control measures, treatment procedures, standards, and policies for such pollutants in the region.
显示更多 [+] 显示较少 [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Impact of repeated irrigation of lettuce cultures with municipal wastewater on soil bacterial community diversity and composition 全文
2022
Gallego, Sara | Brienza, Monica | Béguet, Jérémie | Chiron, Serge | Martin-Laurent, Fabrice | Agroécologie [Dijon] ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Università degli studi della Basilicata = University of Basilicata (UNIBAS) | ANR-16-WTW5-0011,AWARE,ÉVALUER LE DEVENIR DES PESTICIDES ET DES CONTAMINANTS DES EAUX USÉES EN CULTURES AGRICOLES ET LEURS RISQUES ENVIRONNEMENTAUX(2016)
International audience | The effect of wastewater irrigation on the diversity and composition of bacterial communities of soil mesocosms planted with lettuces was studied over an experiment made of five cultivation campaigns. A limited effect of irrigation with either raw or treated wastewater was observed in both alpha-diversity and beta-diversity of soil bacterial communities. However, the irrigation with wastewater fortified with a complex mixture of fourteen relevant chemicals at 10 mu g/L each, including pharmaceutical, biocide, and pesticide active substances, led to a drift in the composition of soil bacterial community. One hundred operational taxonomic units (OTUs) were identified as responsible for changes between treated and fortified wastewater irrigation treatments. Our findings indicate that under a realistic agronomical scenario, the irrigation of vegetables with domestic (treated or raw) wastewater has no effect on soil bacterial communities. Nevertheless, under the worst-case scenario tested here (i.e., wastewater fortified with a mixture of chemicals), non-resilient changes were observed suggesting that continuous/repeated irrigation with wastewater could lead to the accumulation of contaminants in soil and induce changes in bacterial communities with unknown functional consequences.
显示更多 [+] 显示较少 [-]Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities 全文
2022
Xu, Peng | Bian, Jianmin | Li, Yihan | Wu, Juanjuan | Sun, Xiaoqing | Wang, Yu
Excessive enrichment of fluoride threatens ecological stability and human health. The high-fluoride groundwater in the Chagan Lake area has existed for a long time. With the land consolidation and irrigation area construction, the distribution and migration process of fluoride have changed. It is urgent to explore the evolution of fluoride under the dual effects of nature and human. Based on 107 groundwater samples collected in different land use periods, hydrogeochemistry and isotope methods were combined to explore the evolution characteristics and hydrogeochemical processes of fluoride in typical high-fluoride background area and elucidate the impact of anthropogenic activities on fluoride migration. The results indicate that large areas of paddy fields are developed from saline-alkali land, and its area has increased by nearly 30%. The proportion of high-fluoride groundwater (>2 mg/L) has increased by nearly 10%, mainly distributed in the new irrigation area. Hydrogeochemical processes such as dissolution of fluorine-containing minerals, precipitation of carbonate minerals and exchange of Na⁺, Ca²⁺ on the water-soil interface control the enrichment of fluoride. The groundwater d-excess has no obvious change with the increase of TDS, and human activities are one of the reasons for the increase of fluoride. The concentration of fluoride is diluted due to years of diversion irrigation in old irrigation area, whereas the enrichment of δ²H, δ¹⁸O and Cl⁻ in new irrigation area indicates that the vertical infiltration of washing alkali and irrigation water brought fluoride and other salts to groundwater. Fertilizer and wastewater discharges also contribute to the accumulation of fluoride, manifesting as co-increasing nitrate and chloride salts. The results of this study provide a new insight into fluoride migration under anthropogenic disturbance in high-fluoride background areas.
显示更多 [+] 显示较少 [-]Distribution, accumulation, migration and risk assessment of trace elements in peanut-soil system 全文
2022
Yang, Bolei | Shan, Jihao | Xing, Fuguo | Dai, Xiaodong | Wang, Gang | Ma, Junning | Adegoke, Tosin Victor | Zhang, Xinyou | Yu, Qiang | Yu, Xiaohua
Trace elements contamination is mainly originated from industrial emission, sewage irrigation and pesticides, and poses a threat to the environment and human health. This study analyzed the trace element pollutants in peanut-soil systems, the enrichment and translocation capacity of peanut to trace elements, and the potential risk of trace elements to environment and human health. The results indicated that Cd and Ni in peanut kernels exceeded the standard limits in 2019, and the exceeding rate were 9% and 31%, respectively. Cd in 8% of soil samples and As in 98% of soil samples exceeded the risk screening value of trace elements. The concentration of trace elements in peanuts was related to varieties and planting regions. In addition, there was a significant positive correlation between the concentration of Cd in peanut kernel and its concentration in soil. Compared with other trace elements, peanut kernels had stronger ability to enrich and transport Cd, Cu, and Zn, the BFs were 0.45, 0.51 and 0.47, respectively. After oil extraction, trace elements were mainly concentrated in peanut meal, and only 0.25% of Cd was in oil. The RI of trace elements was less than 150, indicating that the study area was under low degree of ecological risk. However, As and Cd might pose moderate risk to environment. Trace elements in soil and peanut could not cause non-carcinogenic and carcinogenic risks to human, but the HI and CR value of As (0.59 and 9.54 × 10⁻⁵) in soil and CRᵢₙg value of Cd (9.25 × 10⁻⁷) in peanut were close to the critical value. We conclude that Cd pollution in peanut kernel, and Cd and As pollution in soil should be monitored to enter into the food chain or environment and to avoid the possible health hazards and environment risks.
显示更多 [+] 显示较少 [-]Environmental and anthropogenic factors associated with the likelihood of detecting Salmonella in agricultural watersheds 全文
2022
Toro, Magaly | Weller, Daniel | Ramos, Romina | Diaz, Leonela | Alvarez, Francisca P. | Reyes-Jara, Angelica | Moreno-Switt, Andrea I. | Meng, Jianghong | Adell, Aiko D.
Surface water is one of the primary sources of irrigation water for produce production; therefore, its contamination by foodborne pathogens, such as Salmonella, may substantially impact public health. In this study, we determined the presence of Salmonella in surface water and characterized the relationship between Salmonella detection and environmental and anthropogenic factors. From April 2019 to February 2020, 120 samples from 30 sites were collected monthly in four watersheds located in two different central Chile agricultural regions (N = 1080). Water samples from rivers, canals, streams, and ponds linked to each watershed were obtained. Surface water (10 L) was filtrated in situ, and samples were analyzed for the presence of Salmonella. Salmonella was detected every month in all watersheds, with a mean detection percentage of 28% (0%–90%) across sampling sites, regardless of the season. Overall, similar detection percentages were observed for both regions: 29.1% for Metropolitan and 27.0% for Maule. Salmonella was most often detected in summer (39.8% of all summer samples tested positive) and least often in winter (14.4% of winter samples). Random forest analysis showed that season, water source, and month, followed by latitude and river, were the most influential factors associated with Salmonella detection. The influences of water pH and temperature (categorized as environmental factors) and factors associated with human activity (categorized as anthropogenic factors) registered at the sampling site were weakly or not associated with Salmonella detection. In conclusion, Salmonella was detected in surface water potentially used for irrigation, and its presence was linked to season and water source factors. Interventions are necessary to prevent contamination of produce, such as water treatment before irrigation.
显示更多 [+] 显示较少 [-]Household herbicide use as a source of simazine contamination in urban surface waters 全文
2022
Myers, Jackie H. | Rose, Gavin | Odell, Erica | Zhang, Pei | Bui, AnhDuyen | Pettigrove, Vincent
Contamination of urban surface waters by herbicides is an increasing concern; however, sources of contamination are poorly understood, hindering the development of mitigation and regulatory strategies. Impervious surfaces, such as concrete in driveways and paths are considered an important facilitator for herbicide runoff to urban surface waters following applications by residential homeowners. This study assessed the transferability of a herbicide from concrete pavers treated with an off-the-shelf product, containing simazine as the active herbicide, marketed for residential homeowner application to impervious surfaces. Commercially available pavers were treated according to label directions and the effects of exposure time prior to irrigation, repeated irrigations, and dry time between irrigations on transferability of simazine to runoff were assessed. Simazine transferability was greatest when receiving an initial irrigation 1 h after application, with concentrations in runoff reduced by half when exposure times prior to the first irrigation were >2 days. Concentrations remained stable for repeated irrigations up to 320 days and exposures to outdoor conditions of 180 days prior to a first irrigation. Dry time between irrigations significantly influenced simazine transfer to runoff. Dry periods of 140 days resulted in approximately a 4-times increase in simazine transferability to runoff. These results suggest that herbicides used by homeowners, or any other users, on impervious surfaces are available to contaminate runoff for prolonged time periods following application at concentrations that may pose risks to aquatic life and for reuse of harvested runoff on parks and gardens. Regulators should consider the potential of hard surfaces to act as reservoirs for herbicides when developing policies and labelling products.
显示更多 [+] 显示较少 [-]