细化搜索
结果 1-10 的 75
Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites 全文
2022
Jing, Fanqi | Guan, Junjie | Tang, Wei | Chen, Jiawei
The synthesis of clay-biochar composite has been recognized as an effective way to enhance the removal of pollutants. The interaction between clay mineral and biomass during thermal pyrolysis and the sorption capacity for ionic/nonionic organic containments have not been elaborated. In this study, two types of biochar were obtained from pyrolytic carbonization of the cellulosic-rich corn straw (C) and lignin-rich pine wood (P) at 500 or 700 °C. Typical clay minerals kaolinite and montmorillonite were selected to prepare clay-biochar composite. The results showed that the addition of clay mineral could strengthen dehydration reaction of corn straw biomass and reinforce its carbon structure. Montmorillonite-biochar composite owned more CC functional groups and porous structure than kaolinite-biochar composite. The addition of clay minerals could promote electrostatic attraction of ionic formed norfloxacin (NOR) on clay-pine wood biochar. However, the sorption capacity of nonionic diethyl phthalate (DEP) adsorption on clay-corn straw biochar decreased, owing to that clay increased the compactness of the biochar carbon structure, thus inhabited hydrophobic partition of nonionic organic compounds on disordered carbon fraction. The results from this study provide insights into the suitable contaminated site remediation by clay-biochar composite.
显示更多 [+] 显示较少 [-]Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance 全文
2020
Qiu, Zhen | Tang, Jiawen | Chen, Jinhuan | Zhang, Qiuzhuo
Biochar sequesters cadmium (Cd) by immobilisation, but the process is often less effective in field trials than in the laboratory. Therefore, the involvement of soil components should be considered for predicting field conditions that could potentially improve this process. Here, we used biochar derived from Spartina alterniflora as the amendment for Cd-contaminated soil. In simulation trials, a mixture of kaolin, a representative soil model component, and S. alterniflora-derived biochar immobilised Cd by forming silicon-aluminium-Cd-containing complexes. Interestingly, the biochar recalcitrance index value increased from 48% to 53%–56% because of the formation of physical barriers consisting of kaolinite minerals and Cd complexes. Pot trials were performed using Brassica chinensis for evaluating the effect of S. alterniflora-derived biochar on plant growth in Cd-contaminated soil. The bio-concentration factor values in B. chinensis were 24%–31% after soil remediation with biochar than in control plants. In summary, these results indicated that soil minerals facilitated Cd sequestration by biochar, which reduced Cd bioavailability and improved the recalcitrance of this soil amendment. Thus, mechanisms for effective Cd remediation should include biochar-soil interactions.
显示更多 [+] 显示较少 [-]Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles 全文
2020
Olusegun, Sunday J. | Mohallem, Nelcy D.S.
Kaolinite supported CoFe₂O₄ (KCF) was synthesized and employed to adsorb doxycycline (DOX), an antibiotic and Congo red (CR), a dye from aqueous solution. The prepared KCF nanocomposite was treated in a muffle furnace at 300, 500 and 700 °C, and thereafter characterized. X-ray diffractogram revealed structural damage of kaolinite and appearance of distinct peaks of CoFe₂O₄ with an increase in calcination temperature, while transmission electron microscopy (TEM) images showed that CoFe₂O₄ nanoparticles were supported on the lamellar surface of kaolinites. Comparative adsorption mechanism of the two targeted contaminants showed that adsorption of DOX was influenced by hydrogen bond and n-π interaction, while that of CR was due to hydrophobic interaction and hydrogen bond. However, the adsorption of the two contaminants was best fitted to the isotherm that was proposed by Langmuir, with a monolayer maximum adsorption capacity of 400 mg g⁻¹ at 333 K for DOX, and 547 mg g⁻¹ at 298 K for CR. The removal of DOX from aqueous solution was favored by an increase in temperature (endothermic), while that of CR was exothermic. Thermodynamics studies confirmed that the adsorption of the two contaminants is feasible and spontaneous. The presence of natural organic matter (NOM) did not affect the removal of the two contaminants. Regeneration and reusability study showed that KCF is economically viable. Therefore, introducing inorganic particles like cobalt ferrite into the matrix of kaolinites provides a composite with promising adsorption capacity.
显示更多 [+] 显示较少 [-]Transformation of gaseous 2-bromophenol on clay mineral dust and the potential health effect 全文
2019
Wang, Yi | Peng, Anping | Chen, Zeyou | Jin, Xin | Gu, Cheng
Iron-bearing clays are ubiquitously distributed as mineral dusts in the atmosphere. Bromophenols were reported as the major products from thermal decomposition of the widely used brominated flame retardants (BFRs). However, little information is available for the reactivity of iron associated with mineral dusts to interact with the atmospheric bromophenols and the subsequent toxic effects. Herein, three common clay minerals (montmorillonite, illite and kaolinite) were used to simulate mineral dusts, and the reactions with gaseous 2-bromophenol were systematically investigated under environmentally relevant atmospheric conditions. Our results demonstrate that structural Fe(III) in montmorillonite and Fe(III) from iron oxide in illite mediated the dimerization of 2-bromophenol to form hydroxylated polybrominated biphenyl and hydroxylated polybrominated diphenyl ether. The surface reaction is favored to occur at moisture environment, since water molecules formed complex with 2-bromophenol and the reaction intermediates via hydrogen bond to significantly lower the reaction energy and promote the dimerization reaction. More importantly, the formed dioxin-like products on clay mineral dust increased the toxicity of the particles to A549 lung cell by decreasing cell survival and damaging cellular membrane and proteins. The results of this study indicate that not only mineral dust itself but also the associated surface reaction should be fully considered to accurately evaluate the toxic effect of mineral dust on human health.
显示更多 [+] 显示较少 [-]Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal 全文
2015
He, Yan | Zeng, Fanfeng | Lian, Zhenghua | Xu, Jianming | Brookes, Philip C.
Natural soil montmorillonite and kaolinite nanoparticles (NPs) were tested as efficient sorbents for organic contaminant (OC) removal through mimicking their natural environmental dispersive states. Sorption of both mineral NPs decreased with increasing pH with ionizable pentachlorophenol (PCP), but increased with pH with non-ionizable phenanthrene (PHE), within the pH range of 4–10. In contrast, sorption decreased consistently for both PCP and PHE, as a function of increasing ion concentration (0.001–0.1 mol L−1). Sorption differences were likely caused by the electrolytic conditions dependent upon surface chemistry of OCs and mineral NPs. The results confirmed that the highly dispersive soil mineral NPs would prevail over both engineered NPs and their regular μm-sized colloids for OC removal, due to their ecological advantages and higher sorption properties. This finding provided a realistic assessment of the environmental function of soil natural minerals in water once they are released from soil into OC polluted aqueous systems.
显示更多 [+] 显示较少 [-]Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids 全文
2020
Chang, Zhaofeng | Tian, Luping | Li, Fangfang | Wu, Min | Steinberg, Christian E.W. | Pan, Bo | Xing, Baoshan
Condensed organic matters (COM) with black carbon-like structures are considered as long-term carbon sinks because of their high stability. It is difficult to distinguish COM from general organic matter by conventional chemical analysis, thus the contribution by and interaction mechanisms of organo-mineral complexes in COM stabilization are unclear and generally neglected. Molecular markers related to black carbon-like structures, such as benzene polycarboxylic acids (BPCAs), are promising tools for the qualitative and quantitative analysis of COM. In this study, one natural soil and two cultivated soils with 25 y- or 55 y-tillage activities were collected and the distribution characteristics of BPCAs were detected. All the investigated soils showed similar BPCA distribution pattern, and over 60% of BPCAs were detected in clay fraction. The extractable BPCA contents were substantially increased after mineral removal. The ratios of BPCA contents before and after mineral removal indicate the extent of COM-mineral particle interactions, and our results suggested that up to 73% COM were protected by mineral particles, and more stronger interactions were noted on clay than on silt. The initial cultivation dramatically decreased COM-clay interactions, and this interaction was recovered only slowly after 55-y cultivation. Kaolinite and muscovite are important for COM protection. But a possible negative correlation between BPCAs and reactive iron oxides of the cultivated soils suggested that iron may promote COM degradation when disturbed by tillage activities. This study provided a new angle to study the stabilization of COM and emphasized the importance of organo-mineral complexes for COM stabilization.
显示更多 [+] 显示较少 [-]Insight into the stability and correlated transport of kaolinite colloid: Effect of pH, electrolytes and humic substances 全文
2020
Sun, Yalou | Pan, Duoqiang | Wei, Xiaoyan | Xian, Dongfan | Wang, Peng | Hou, Junjun | Xu, Zhen | Liu, Chunli | Wu, Wangsuo
Environmental colloids play crucial roles in the transport of environmental pollutants in porous media by acting as pollutant carriers. In this work, the dispersion stability and correlated transport of kaolinite colloid were investigated as a function of solution pH, solution ionic strength, and concentration of humic acid (HA), the roles of kaolinite colloid in driving Eu(III) transport were discussed. The results showed that the dispersion of kaolinite colloid was favorable at alkaline and extremely acidic pH values, the trend of aggregation with varying pH was critically reversed at pH ∼3.2 due to the transformation of surface electrical properties. Cations with higher valence and mineral affinity showed a more significant contribution in inducing colloid aggregation, which was generally in accordance with the Schulze-Hardy rule and Hofmeister series. HA greatly increased the colloid stability by altering the surface electrostatic potential and steric effect. The Derjguin-Landau-Verwey-Overbeek (DLVO) model suggested that the electrostatic force between colloidal particles controlled the aggregation and destabilizing trend of colloid, and the theoretically calculated critical coagulation concentration was consistent with that determined from kinetic aggregation experiments. The roles of kaolinite colloid in driving Eu(III) transport varied under different conditions, and the transport behavior was highly correlated with the dispersion stability trend of colloid. These results can provide an enhanced understanding of the environmental fate of kaolinite colloid as well as commensal pollutants.
显示更多 [+] 显示较少 [-]Adsorption and fractionation of Pt, Pd and Rh onto inorganic microparticles and the effects of macromolecular organic compounds in seawater 全文
2019
Adsorption and fractionation of Pt, Pd and Rh (defined here as platinum group elements, PGEs) onto the representative inorganic microparticles, including Fe2O3, MnO2, CaCO3, SiO2, Al2O3 and kaolinite in seawater were investigated. The effects of macromolecular organic compounds (MOCs) as the representatives of organic matter, including humic acids (HA), bovine serum albumin (BSA) and carrageenan, on the adsorption were also studied considering that organic matter is ubiquitous in seawater and indispensable to marine biogeochemical cycles. In the absence of MOCs, the representative mineral particles Fe2O3 and MnO2 had the strongest interaction with PGEs. The adsorption of PGEs onto the representative biogenic particles SiO2 and CaCO3 and lithogenic particles Al2O3 and kaolinite was similar or weaker than onto the mineral particles. MOCs inhibited the interaction between PGEs and the particles except for Pt and Pd onto the biogenic particles in artificial seawater. This impediment may be closely related to the interaction between particles, MOCs and elements. The partition coefficient (log Kd) of Pt was similar (∼4.0) in the presence of MOCs, indicating that the complexation between Pt and MOCs was less important than hydrolysis or adsorption onto the acid oxide particle surface. Rh tended to fractionate onto the mineral and lithogenic particles in the presence of HA and carrageenan, while Pd was more likely to fractionate onto the biogenic particles. However, BSA enhanced the fractionation tendency of Pd onto the mineral particles. The results indicate that the adsorption behavior of Pd onto inorganic particles was significantly affected by the composition or the type of MOCs. Hence, the interaction between PGEs and inorganic particles may be greatly affected by the macromolecular organic matter in the ocean.
显示更多 [+] 显示较少 [-]Is the interaction between graphene oxide and minerals reversible? 全文
2019
Liu, Xia | Sun, Ju | Xu, Xuetao | Sheng, Guodong | Sun, Yubing | Huang, Yongshun | Alsaedi, Ahmed | Hayat, Tasawar | Li, Jiaxing
The increased applications and production of graphene oxide (GO) make the necessity to study information on the interaction of GO with minerals. In this work, adsorption and desorption were used to study the reversibility of interaction between GO and goethite/kaolinite. Result showed that the pH value, ionic strength, and temperature had significant effects on the adsorption and desorption behavior of GO. Interaction force was stronger between GO and goethite than that of kaolinite. The interaction may be attributed to the electrostatic, hydrogen-bonding, and Lewis acid base interactions. The irreversible interaction between GO and minerals may be a main mechanism for the observed desorption hysteresis. These results are important for evaluating the fate and health risk of GO in the environment.
显示更多 [+] 显示较少 [-]Modeling of the transport and deposition of polydispersed particles: Effects of hydrodynamics and spatiotemporal evolution of the deposition rate 全文
2018
Ma, Enze | Ouahbi, Tariq | Wang, Huaqing | Ahfir, Nasre-Dine | Alem, Abdellah | Hammadi, Ahmed
A time-distance-dependent deposition model is built to investigate the effects of hydrodynamic forces on the transport and deposition of polydispersed particles and the evolution of deposition rates with time and distance. Straining and the heterogeneity of the particle population are considered to play important roles in the decreasing distribution of deposition rates. Numerical simulations were applied in a series of sand column experiments at different fluid velocities for three different porous media. The effects of hydrodynamics forces are elaborated with the systematic variations of deposition dynamic parameters of the proposed model. With retention distributions with particle size as well as temporal and spatial evolutions of deposition rates, the transport and deposition mechanisms of polydispersed particles will be elucidated through the interplay of the variation of the particle size distribution of mobile particle populations and the geometrical change of the porous medium due to retention (straining and blocking).
显示更多 [+] 显示较少 [-]