细化搜索
结果 1-10 的 113
Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
显示更多 [+] 显示较少 [-]Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage
2021
Das, Sourav Kumar | Ali, Manjoor | Shetake, Neena G. | Dumpala, Rama Mohan R. | Pandey, Badri N. | Kumar, Amit
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1–100 μg/ml, 24–72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
显示更多 [+] 显示较少 [-]1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
显示更多 [+] 显示较少 [-]In vivo evaluation of oxidative stress and biochemical alteration as biomarkers in glass clover snail, Monacha cartusiana exposed to zinc oxide nanoparticles
2020
Abdel-Halim, Khaled Y. | Osman, Safaa R. | Abdou, Gehan Y.
Oxidative stress is considered a main commonly reported mechanism of nanoparticles toxicity, so this study aimed to evaluate oxidative stress and biochemical alterations in the haemolymph and digestive gland of snail, Monacha cartusiana exposed to sublethal concentrations of zinc oxide nanoparticles (ZnONPs) for 14 days (d). The results indicated that, ZnONPs induced significant increases in lipid peroxidation (LPO) and lactate dehydrogenase (LDH) in treated animals and did not return to normal levels after recover period. A significant decline of glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, and glutathione (GSH) content in the haemolymph and digestive gland of snails was observed when compared with control. A significant increase was observed in catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities of treated animals. In general, nano-materials are able to induce oxidative stress in exposed animals. The present findings indicate that, alterations of antioxidant enzyme activities, increase of LPO, LDH, and reducing of GSH content and GST, GPx activities are recognized to oxidative stress and cell damage. This species could be considered a good bioindicator to assess nano-materials exposure.
显示更多 [+] 显示较少 [-]Accumulation of pollutants in nestlings of an endangered avian scavenger related to territory urbanization and physiological biomarkers
2019
Ortiz-Santaliestra, Manuel E. | Tauler-Ametller, Helena | Lacorte, Silvia | Hernández-Matías, Antonio | Real, Joan | Mateo, Rafael
We monitor pollutant accumulation and investigate associated changes at the physiological level within the population of an obligate avian scavenger, the Egyptian Vulture (Neophron percnopterus), from Catalonia (NE Spain). This population is expanding its range, presumably because of the use of human waste disposal sites as food resource. We hypothesized that habitat urbanization, presumably associated with feeding from human wastes, could influence the accumulation of persistent organic pollutants and metals. The aim of this study was to explore the relationship between accumulated pollutants and biochemical parameters in nestling blood. We used the proportion of urban surface within an 8 km radius of each nest as a proxy to study the relationship between anthropic influence and pollutant accumulation. Observed blood levels of metals, organochlorine pesticides, polychlorinated biphenyls (PCBs), per- and polyfluoroalkylated substances (PFAS) and polybrominated diphenyl ethers (PBDEs) were relatively low, as expected for nestling individuals due to short-term exposures. CB-180 and PBDEs were associated with variations in blood biochemistry parameters; hexa-BDEs appeared positively associated with activities of the enzymes aspartate aminotransferase and lactate dehydrogenase, whereas CB-180 accumulation was associated with an increased activity of creatine phosphokinase and elevated glutathione levels. Increased CB-180 levels were also related to decreased blood concentrations of calcium, cholesterol, α-tocopherol and lutein. A proportion of urban surfaces as low as 6.56% within a radius of 8 km around the nest appears related to the accumulation of CB-180, the majority of analysed PFAS and of PBDE congeners 99 and 209, and increased urbanization was also associated with decreased plasma levels of α-tocopherol and carotenoids. These associations suggest that changes in blood profiles of vitamins, carotenoids or other analytes, despite related to increased plasma levels of CB-180, would be consequence of exploitation of artificial food sources rather than of a direct effect of the pollutants.
显示更多 [+] 显示较少 [-]Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model
2019
Sun, Sujie | Guo, Hua | Wang, Jianshe | Dai, Jiayin
Perfluorooctanoic acid (PFOA) toxicity is of considerable concern due to its wide application, environmental persistence, and bioaccumulation. In the current study, we used a scaffold-free three-dimensional (3D) spheroid model of mouse liver cells (AML12) to explore the toxicity of PFOA and emerging alternatives (HFPO-DA and PFO4DA). Comparing the short-term (24 and 72 h treatment) toxicity of PFOA between conventional 2D monolayer cells and 3D spheroids, we found that spheroids had higher EC₅₀ values and lower ROS levels after treatment, indicating their greater resistance to PFOA. Cell viability (i.e., adenosine triphosphate (ATP) content and lactate dehydrogenase (LDH) leakage) and liver-specific function (i.e., albumin secretion) were stable in spheroids through 28 day of culture. However, under 100 and 200 μM-PFOA treatment for 28 day, ROS levels, LDH leakage, and caspase3/7 activity all increased significantly. As a sensitive parameter, ROS showed a significant increase at 21 day, even in the 50 μM-PFOA group. Consistent with the elevation of ROS and caspase3/7, the expressions of oxidative stress- and apoptosis-related genes, including Gsta2, Nqo1, Ho-1, caspase3, p53, and p21, were induced in dose- and time-dependent manners after PFOA exposure. The peroxisome proliferator-activated receptor alpha (PPARα) pathway was also activated after treatment, with significant induction of its target genes, Fabp4 and Scd1. Similar to PFOA, both HFPO-DA and PFO4DA activated the PPARα pathway, induced ROS levels, and initiated cell damage, though at a relatively lower extent than that of PFOA. Our results imply that the 3D spheroid model is a valuable tool in chronic toxicological studies.
显示更多 [+] 显示较少 [-]Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations
2016
Karamī, ʻAlī | Romano, Nicholas | Hamzah, Hazilawati | Simpson, Stuart L. | Yap, Chee Kong
Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
显示更多 [+] 显示较少 [-]Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses
2021
Muniz, Marta Silva | Halbach, Katharina | Alves Araruna, Igor Cauê | Martins, Rafael Xavier | Seiwert, Bettina | Lechtenfeld, Oliver | Reemtsma, Thorsten | Farias, Davi
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC₅₀ = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
显示更多 [+] 显示较少 [-]Characterization of the chemical components and bioreactivity of fine particulate matter produced during crop-residue burning in China
2019
Chuang, Hsiao-Chi | Sun, Jian | Ni, Haiyan | Tian, Jie | Lui, Ka Hei | Han, Yongming | Cao, Junji | Huang, Ru-Jin | Shen, Zhenxing | Ho, Kin-Fai
Five types of crop residue (rice, wheat, corn, sorghum, and sugarcane) collected from different provinces in China were used to characterize the chemical components and bioreactivity properties of fine particulate matter (PM2.5) emissions during open-burning scenarios. Organic carbon (OC) and elemental carbon (EC) were the most abundant components, contributing 41.7%–54.9% of PM2.5 emissions. The OC/EC ratio ranged from 8.8 to 31.2, indicating that organic matter was the dominant component of emissions. Potassium and chloride were the most abundant components in the portion of PM2.5 composed of water-soluble ions. The coefficient of divergence ranged from 0.27 to 0.51 among various emissions profiles. All samples exposed to a high PM2.5 concentration (150 μg/mL) exhibited a significant reduction in cell viability (A549 lung alveolar epithelial cells) and increase in lactic dehydrogenase (LDH) and interleukin 6 levels compared with those exposed to 20 or 0 μg/mL. Higher bioreactivity (determined according to LDH and interleukin 6 level) was observed for the rice, wheat, and corn samples than for the sorghum straw samples. Pearson's correlation analysis suggested that OC, heavy metals (chromium, manganese, iron, nickel, copper, zinc, tin, and barium), and water-soluble ions (fluoride, calcium, and sulfate) are the components potentially associated with LDH production.
显示更多 [+] 显示较少 [-]Long-term effect of different Cu(II) concentrations on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor
2019
Li, Shanshan | Ma, Bingrui | Zhao, Changkun | She, Zonglian | Yu, Naling | Pan, Yunhao | Gao, Mengchun | Guo, Liang | Jin, Chunji | Zhao, Yangguo
The performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were investigated under 75-day exposure of different Cu(II) concentrations. Cu(II) at 0–5 mg/L had no distinct impact on the chemical oxygen demand (COD) and nitrogen removal, oxygen-uptake rate (OUR), nitrification and denitrification rate, and microbial enzymatic activity. The inhibitory effects of Cu(II) at 10 and 30 mg/L on the nitrogen removal rate, OUR, and microbial enzymatic activity of SBR increased with an increment in operation time due to the Cu(II) biotoxicity and the accumulation of Cu(II) in activated sludge. The changes of microbial reactive oxygen species production, lactate dehydrogenase release, catalase activity and superoxide dismutase activity demonstrated that Cu(II) at 10 and 30 mg/L broke the equilibrium between the oxidation and antioxidation processes in microbial cells and also damaged the cytomembrance integrity, which could affect the COD and nitrogen removal performance and change normal microbial cell morphology. The Cu(II) in the influent could be removed by the microbial absorption and accumulated in the activated sludge under long-term exposure. The microbial community displayed some distinct changes from 0 to 30 mg/L Cu(II). In contrast with 0 mg/L Cu(II), Nitrosomonas, Nitrospira and some denitrifying bacteria obviously decreased in relative abundance under long-term exposure of 10 and 30 mg/L Cu(II).
显示更多 [+] 显示较少 [-]