细化搜索
结果 1-10 的 103
Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L 全文
2022
Sarath, Nair G. | Shackira, A.M. | El-Serehy, Hamed A. | Hefft, Daniel Ingo | Puthur, Jos T.
The carcinogenic attribute of arsenic (As) has turned the world to focus more on the decontamination and declining the present level of As from the environment especially from the soil and water bodies. Phytoremediation has achieved a status of sustainable and eco-friendly approach of decontaminating pollutants, and in the present study, an attempt has been made to reveal the potential of As remediation by a halophyte plant, Acanthus ilicifolius L. Special attention has given to analyse the morphological, physiological and anatomical modulations in A. ilicifolius, developed in response to altering concentrations of Na₂AsO₄.7H₂O (0, 70, 80 and 90 μM). Growth of A. ilicifolius under As treatments were diminished as assessed from the reduction in leaf area, root length, dry matter accumulation, and tissue water status. However, the plants exhibited a comparatively higher tolerance index (44%) even when grown in the higher concentrations of As (90 μM). Arsenic treatment induced reduction in the photochemical activities as revealed by the pigment content, chlorophyll stability index (CSI) and Chlorophyll a fluorescence parameter. Interestingly, the thickness and diameter of the xylem walls in the leaf as well as root tissues of As treated samples increased upon increasing the As concentration. The adaptive strategies exhibited by A. ilicifolius towards varying concentrations of As is the result of coordinated responses of morpho-physiological and anatomical attributes, which make the plant a promising candidate for As remediation, especially in wetlands.
显示更多 [+] 显示较少 [-]Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system 全文
2020
Zhang, Weiyuan | Zhang, Yuzhen | Gong, Jirui | Yang, Bo | Zhang, Zihe | Wang, Biao | Zhu, Chenchen | Shi, Jiayu | Yue, Kexin
Particulate matter (PM) pollution is an urgent urban environmental problem. However, plants can mitigate this pollution by filtering the air. Combining the PM capture capacity with the air pollution tolerance could be better evaluate the suitability of greenbelt plants. We selected nine dominant roadside plants growing at two sites in Beijing, and compared their PM capture capacity, morphological characteristics, biochemical characteristics, and air pollution tolerance index (APTI). Sophora japonica had the highest PM capture capacity (362.98 μg cm⁻²), and its wax layers could trap large amounts of PM₂.₅; this high efficiency is important for successful phytoremediation. Sophora japonica. Sabina chinensis, Ulmus pumila, and Euonymus japonicus also showed relatively high PM capture capacity. This is due to their complex cuticular wax layers, short petioles, rough surfaces, high stomata density, and dense canopy structures which reduce the possibility of resuspension of captured PM. Amount of PM captured per unit leaf area had a significant positive effect on the degree of membrane lipid peroxidation, indicating that species with high PM capture capacity suffered higher oxidative stresses. Air pollution showed the strongest negative effect size on chlorophyll contents of E. japonicas. While, S. japonica, S. chinensis, and U. pumila could prevent chlorophyll content decline under severe oxidative stress. Sophora japonica also had the highest APTI at both sites, indicating this species had the greatest tolerance to air pollution. Our findings suggest that S. japonica would be the most suitable species for greenbelt construction in Beijing, followed by S. chinensis, E. japonicus, and U. pumila.
显示更多 [+] 显示较少 [-]Automobile exhaust particles retention capacity assessment of two common garden plants in different seasons in the Yangtze River Delta using open-top chambers 全文
2020
Miao Zhou, | Wang, Xiang | Lin, Xintao | Yang, Shan | Zhang, Jing | Chen, Jian
Particulate matter (PM) pollution is a serious environmental problem in most of the cities in the Yangtze River Delta region. Plants can effectively filter ambient air by adsorbing PM. However, only a few studies have paid attention to the dynamic changes and seasonal differences in particle retention capacities of plants under long-term pollution. In this study, we investigated the dynamic changes in particle retention capabilities of the evergreen, broad-leaved, greening plants—Euonymus japonicus var. aurea-marginatus and Pittosporum tobira—in spring and summer. We employed an open-top chamber to simulate the severity of the tail gas pollution. The results showed that, both the plants reached a saturated state in 18–21 days, under continuous exposure to pollution (daily concentration of PM₂.₅: 214.64 ± 321.33 μg·cm⁻³). This was 6–8 days longer than that in the field experiments. In spring, the maximum retention of total particulate matter per unit leaf area of E. japonicus var. aurea-marginatus and P. tobira was 188.47 ± 3.72 μg cm⁻² (18 days) and 67.63 ± 2.86 μg cm⁻² (21 days), respectively. In summer, E. japonicus var. aurea-marginatus and P. tobira reached the maximum retention of the particle on the 21st day, with a net increase of 94.10 ± 3.77 μg cm⁻² and 27.81 ± 3.57 μg cm⁻², respectively. Irrespective of season, the particle retention capacity of E. japonicus var. aurea-marginatus was higher than that of P. tobira, and it showed a better effect on reducing the concentration of fine particles in the atmosphere. The particle retention of the two plants was higher in spring than that in summer. E. japonicus var. aurea-marginatus displayed a significant difference in particle retention between the seasons, while P. tobira did not show much difference. These results will provide a foundation for future studies on the dynamic changes and mechanism of particle retention in plants and management practices by employing plants for particle retention in severely polluted areas.
显示更多 [+] 显示较少 [-]Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities 全文
2020
Zhang, Xuyi | Lyu, Junyao | Han, Yujie | Sun, Ningxiao | Sun, Wen | Li, Jinman | Liu, Chunjiang | Yin, Shan
Plants can intercept airborne particulate matter through deposition. Different types of plants exhibit different functional leaf traits, which can affect the dry deposition velocity (Vd). However, the most crucial leaf traits of coniferous and broadleaved trees remain unidentified. In this study, we selected 18 typical plants from the subtropical monsoon regions, where PM₂.₅ (fine particulate matter with a diameter of ≤2.5 μm) concentrations are relatively high, and classified them into coniferous and broadleaved categories. Subsequently, we analyzed the relationships between Vd and leaf surface free energy (SFE), single leaf area (LAₛ), surface roughness (SR), specific leaf area (SLA), epicuticular wax content (EWC), and width-to-length ratio (W/L). The results indicated that most coniferous trees exhibited a high Vd. The correlation analysis revealed that SFE, SR, LAₛ, and W/L were the key factors that affected the Vd of all the tested species. SFE and SLA had the strongest influence on the Vd of broadleaved trees, whereas LAₛ and SLA had the strongest effect on that of coniferous trees. Most coniferous trees had a high SLA, which can reduce water loss and hinder particle deposition. However, the stiff leaves of coniferous trees fluttered less, resulting in a larger leaf area that enhanced the capture efficiency. The leaf structure of broadleaved trees is more flexible, resulting in erratic flutter, which may impede deposition and lead to high resuspension. Coniferous and broadleaved trees may have different dominant leaf traits that affect particle deposition.
显示更多 [+] 显示较少 [-]Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety 全文
2019
Käffer, Márcia I. | Domingos, Marisa | Lieske, Isadora | Vargas, Vera M.F.
Air pollution has been identified as a major cause of environmental and human health damage. O₃ is an oxidative pollutant that causes leaf symptoms in sensitive plants. This study aims to adjust a multilinear model for the monitoring of O₃ in subtropical climatic conditions by associating O₃ concentrations with measurements of morphological leaf traits in tobacco plants and different environmental variables. The plants were distributed into five areas (residential, urban or industrial) in the southern region of Brazil and exposed during 14 periods, of 14 days each, during the years of 2014 and 2015. The environmental variables and leaf traits during the exposure periods were described by mean, median, standard deviation and minimum and maximum values. Spearman correlation and multiple linear regression analyses were applied on data from exposure periods. Leaf injury index, leaf area, leaf dry mass, temperature, relative humidity, global solar radiation and accumulated rainfall were used in the regression analyses to select the best models for predicting O₃ concentrations. Leaf injury characteristically caused by O₃ was verified in all areas and periods of plant exposure. Higher values of leaf injury (24.5% and 27.7%) were registered in the 13th and 12th exposure periods during spring and in areas influenced by urban and industrial clutches. The VPD, temperature, global solar radiation and O₃ were correlated to leaf injury. Environmental variables [leaf area, leaf dry mass, global solar radiation and accumulated rainfall] and primarily the VPD were fundamental to improve the adjustments done in the bioindicator model (R² ≥ 0.73). Our research shows that biomonitoring employing the tobacco “Bel-W3” can be improved by measuring morphological leaf traits and meteorological parameters. Additionally, O₃ fumigation experiment should be performed with biomonitoring as conducted in this study, which are useful in understanding the role of other environmental factors.
显示更多 [+] 显示较少 [-]Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation 全文
2017
Brackx, Melanka | Van Wittenberghe, Shari | Verhelst, Jolien | Scheunders, Paul | Samson, Roeland
In urban areas, the demand for local assessment of air quality is high. The existing monitoring stations cannot fulfill the needs. This study assesses the potential of hyperspectral tree leaf reflectance for monitoring traffic related air pollution. Hereto, 29 Carpinus betulus saplings were exposed to an environment with either high or low traffic intensity. The local air quality was estimated by leaf saturation isothermal remanent magnetization (SIRM). The VIS-NIR leaf reflectance spectrum (350–2500 nm) was measured using a handheld AgriSpec spectroradiometer (ASD Inc.). Secondary, leaf chlorophyll content index (CCI), specific leaf area (SLA) and water content (WC) were determined. To gain insight in the link between leaf reflectance and air quality, the correlation between SIRM and several spectral features was determined. The spectral features that were tested are plain reflectance values, derivative of reflectance, two-band indices using the NDVI formula and PCA components. Spectral reflectance for wavelength bands in the red and short wave IR around the red edge, were correlated to SIRM with Pearson correlations of up to R = −0.85 (R² = 0.72). Based on the spectral features and combinations thereof, binomial logistic regression models were trained to classify trees into high or low traffic pollution exposure, with classification accuracies up to 90%. It can be concluded that hyperspectral reflectance of C. betulus leaves can be used to detect different levels of air pollution within an urban environment.
显示更多 [+] 显示较少 [-]Evergreen or deciduous trees for capturing PAHs from ambient air? A case study 全文
2016
De Nicola, Flavia | Concha Graña, Estefanía | López Mahía, Purificación | Muniategui Lorenzo, Soledad | Prada Rodríguez, Darío | Retuerto, Rubén | Carballeira, Alejo | Aboal, Jesús R. | Fernández, J Ángel
Tree canopies play a key role in the cycling of polycyclic aromatic hydrocarbons (PAHs) in terrestrial ecosystems, as leaves can capture PAHs from the air. In this study, accumulation of PAHs was compared in an evergreen species, P. pinaster, and in a deciduous species, Q. robur, in relation to some physio-morphological characteristics. For this purpose, pine needles and oak leaves collected from different sites across Galicia (NW Spain) were analysed to determine PAH contents, specific leaf area, stomatal density and conductance.Leaves and needles contained similar total amounts of PAHs. The major contribution of particle-bound PAHs in oak (the concentrations of 4- and 5-ring PAHs were two times higher, and those of 6-ring PAHs five times higher in oak than in pine) may be related to the higher specific leaf area (13 and 4 cm2 g−1 dry mass in respectively oak and pine). However, the major contribution of vapor-phase PAHs in pines may be affected by the stomatal conductance (two times higher in pine than in oak). Moreover, an increase in the diameter at breast height of trees led to an increase in accumulation of PAHs, with pine capturing higher amounts of low and medium molecular weight PAHs. The study findings underline the potential role of trees in improving air quality, taking into account the canopy biomass and life cycle.
显示更多 [+] 显示较少 [-]On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: Relationships and spatial variability of different particle size fractions 全文
2014
Hofman, Jelle | Wuyts, Karen | Van Wittenberghe, Shari | Brackx, Melanka | Samson, Roeland
Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m−2) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3–10 μm and 0.2–3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m−2 of dust on their leaves, of which 74 mg m−2 was within the 0.2–10 μm (∼PM10) size range and 40 mg m−2 within the 0.2–3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates.
显示更多 [+] 显示较少 [-]Comparison of leaf saturation isothermal remanent magnetisation (SIRM) with anatomical, morphological and physiological tree leaf characteristics for assessing urban habitat quality 全文
2013
Kardel, Fatemeh | Wuyts, Karen | Khavaninzhadeh, Ali Reza | Wuytack, Tatiana | Babanezhad, Manoochehr | Samson, Roeland
Leaf saturation isothermal remanent magnetisation (SIRM) is known as a good proxy of atmospheric, traffic related particulate matter (PM) concentration. In this study, we compared leaf SIRM with Leaf area (LA), leaf dry weight (LDW), specific leaf area (SLA), stomatal density (SD), relative chlorophyll content (RCC), chlorophyll fluorescence parameters (Fv/Fm and PI) for three urban tree types in the city of Ghent, Belgium. A negative significant relationship of LA, LDW and Fv/Fm, and a positive significant relationship of SLA with leaf SIRM was observed. Among all considered parameters, leaf SIRM had the highest potential for discrimination between contrasting land use classes. It was concluded that urban habitat quality can be monitored with leaf SIRM, independent of the other above mentioned plant parameters. The anatomical, morphological and physiological tree leaf characteristics considered are not good indicators for atmospheric PM, but might be interesting bio-indicators of other air pollutants than PM.
显示更多 [+] 显示较少 [-]Growth, leaf traits and litter decomposition of roadside hybrid aspen (Populus tremula L.×P. tremuloides Michx.) clones 全文
2011
Nikula, Suvi | Manninen, Sirkku | Vapaavuori, Elina | Pulkkinen, Pertti
Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula×P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15m from the motorway. Although no significant distance×clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling.
显示更多 [+] 显示较少 [-]