细化搜索
结果 1-10 的 142
Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone.
1995
Mikkelsen T.N. | Dodell B. | Lutz C.
Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit
2019
Dusart, Nicolas | Vaultier, Marie-Noëlle | Olry, Jean-Charles | Buré, Cyril | Gérard, Joëlle | Jolivet, Yves | Le Thiec, Didier | SILVA (SILVA) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL) | ANR-12-LABXARBRE-01
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
显示更多 [+] 显示较少 [-]Responses to herbicides of Arctic and temperate microalgae grown under different light intensities
2023
Du, Juan | Izquierdo, Disney | Xu, Hai-feng | Beisner, Beatrix | Lavaud, Johann | Ohlund, Leanne | Sleno, Lekha | Juneau, Philippe
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
显示更多 [+] 显示较少 [-]Generation of novel n-p-n (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants
2022
Rajendran, Saravanan | Hoang, Tuan K.A. | Trudeau, Michel L. | Jalil, A.A. | Naushad, Mu | Awual, Md Rabiul
Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO₂-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
显示更多 [+] 显示较少 [-]A new understanding of the microstructure of soot particles: The reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species
2021
Zhu, Jiali | Shang, Jing | Zhu, Tong
The mechanisms of soot’s photochemistry are still unclear, especially, how the microstructure and composition of soot influence its photoactivity. In the current study, we started with the exploration of the microstructure of soot particles and gained new insights. The elemental-carbon fraction of soot (E-soot), considered the core component of soot and can reflect the intrinsic characteristics of soot, was extracted by organic solvents and characterized in terms of structure and chemical reactivity. The intrinsic structure of E-soot was found to be more analogous to reduced graphene oxide than to graphene, in terms of containing similar levels of defective sites such as oxygen-containing functional groups and environmentally persistent free radicals, as well as exhibiting similar optoelectronic performance. The generation of reactive oxygen species via an electron transfer pathway under visible light suggests that reduced graphene oxide-like E-soot can serve as a potential carbo-photocatalyst, which facilitates elucidating the mechanism of E-soot’s role during soot’s photochemical aging. Our study reveals the intrinsic structure of soot and its role in photo-triggered reactive oxygen species production, which is vital for atmospheric and health effects.
显示更多 [+] 显示较少 [-]Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
显示更多 [+] 显示较少 [-]Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation
2019
Mohammadifard, Zahra | Saboori, Rahmatallah | Mirbagheri, Naghmeh Sadat | Sabbaghi, Samad
Removal of toxic formaldehyde from environmental waters is crucial to maintain ecosystem sustainability and human health. In this work, MIL-100(Fe) as a heterogeneous Fenton-like photocatalyst was used for the treatment of formaldehyde-contaminated water. The MIL-100(Fe) was synthesized via a facile solvothermal method and fully characterized using different spectroscopic and microscopic techniques. Based on the results, the formation of highly porous, crystalline, and stable visible light-responsive MIL-100(Fe) was confirmed. The Fenton-like photocatalytic efficiency of the MIL-100(Fe) toward the degradation of formaldehyde was then studied under visible light irradiation. For this purpose, the effect of initial concentration of formaldehyde, photocatalyst dose, H₂O₂ concentration, solution pH, and contact time on the removal efficiency of the MIL-100(Fe) was investigated using central composite design. The obtained results showed that the removal efficiency of the MIL-100(Fe) is significantly affected by the initial concentration of formaldehyde. A second-order model with R² = 0.93 was developed for the system that was able to adequately predict the percentage removal of formaldehyde by the MIL-100(Fe) under different experimental conditions. According to the numerical optimization results, by using 1.13 g L⁻¹ photocatalyst and 0.055 mol L⁻¹ H₂O₂, 93% of formaldehyde can be removed after 119 min from an aqueous solution containing 700 mg L⁻¹ of formaldehyde at pH 6.54.
显示更多 [+] 显示较少 [-]Visible-light driven dual heterojunction formed between g-C3N4/BiOCl@MXene-Ti3C2 for the effective degradation of tetracycline
2022
Sharma, Gaurav | Kumar, Amit | Sharma, Shweta | Naushad, Mu | N. Vo, Dai-Viet | Ubaidullah, Mohd | Shaheen, Sabry M. | Stadler, Florian J.
In the present study, we have successfully formulated a dual heterojunction of g-C₃N₄/BiOCl@MXene-Ti₃C₂ (GCBM) which was found to be highly active in the visible region. GCBM was found to be highly efficient for the degradation of an antibiotic, tetracycline (TC) as compared to the individual constituting units; g-C₃N₄ and BiOCl. Maximum of 97% TC degradation rate was obtained within 90 min of visible light irradiation for initial concentration of 10 mg/L of TC. Optical analysis exhibited that the synthesized heterojunction showed high absorption in the complete spectrum. The reactive species specified by the scavenger study showed the major involvement of •O₂⁻ and •OH radicals. The charge transfer mechanism showed that 2 schemes were majorly involvement in which Z-scheme was formed between g-C₃N₄ and BiOCl and Schottky junction was formed between g-C₃N₄ and Mxene-Ti₃C₂. The formation of Schottky junction helped in inhibiting the back transfer of photogenerated charges and thus, helped in reducing the recombination rate. The synthesized photocatalyst was found to be highly reusable and was studied for consecutive 5 cycles that generalized the high proficiency even after repetitive cycles.
显示更多 [+] 显示较少 [-]Nickel decorated manganese oxynitride over graphene nanosheets as highly efficient visible light driven photocatalysts for acetylsalicylic acid degradation
2021
Mohan, Harshavardhan | Yoo, Suhwan | Thimmarayan, Srivalli | Oh, Hyeon Seung | Kim, Gitae | Seralathan, Kamala-Kannan | Shin, Taeho
In this work, we prepared nanocomposites of nickel-decorated manganese oxynitride on graphene nanosheets and demonstrated them as photocatalysts for degradation of acetylsalicylic acid (ASA). The catalyst exhibited a high degradation efficiency over ASA under visible light irradiation and an excellent structural stability after multiple uses. Compared to manganese oxide (MnO) and manganese oxynitride (MnON) nanoparticles, larger specific surface area and smaller band gap were observed for the nanocomposite accounting for the enhanced photocatalytic efficiency. Besides the compositional effect of the catalyst, we also examined the influence of various experimental parameters on the degradation of ASA such as initial concentration, catalyst dose, initial pH and additives. The best performance was obtained for the nanocomposite when the catalyst dose was 10 mg/mL and the initial pH 3. Detection of intermediates during photocatalysis showed that ASA undergoes hydroxylation, demethylation, aromatization, ring opening, and finally complete mineralization into CO₂ and H₂O by reactive species. For practical applications as a photocatalyst, cytotoxicity of the nanocomposite was also evaluated, which revealed its insignificant impact on the cell viability. These results suggest the nanocomposite of nickel-decorated manganese oxynitride on graphene nanosheets as a promising photocatalyst for the remediation of ASA-contaminated water.
显示更多 [+] 显示较少 [-]Morphology-Controlled Synthesis of α–Fe2O3 Nanocrystals Impregnated on g-C3N4–SO3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light
2020
Balu, Sridharan | Chen, Yi-Lun | Juang, R.-C. | Yang, Thomas C.-K. | Juan, Joon Ching
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe₂O₃ nanocrystals (α-Fe₂O₃–NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe₂O₃–NCs on g-C₃N₄ (α-Fe₂O₃–NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C₃N₄ accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe₂O₃–NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe₂O₃-HPs@CN-SAF and α-Fe₂O₃-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe₂O₃–NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C₃N₄ and α-Fe₂O₃, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe₂O₃–NCs@CN-SAF nanocomposites.
显示更多 [+] 显示较少 [-]