细化搜索
结果 1-10 的 72
Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model
2020
Zhang, Qianqian | Wang, Huiwei | Lu, Chuan
Sulfate (SO₄²⁻) contamination in groundwater and surface water is an environmental problem of widespread concern. In this study, we combined stable isotope analyses of SO₄²⁻ (δ³⁴S and δ¹⁸O) and water (δ²H and δ¹⁸O) with a Bayesian mixing model (SIAR), for the first time, to identify sources and transformation of SO₄²⁻ in an area of northern China with multiple potential sources of pollution. The overall values of δ³⁴S and δ¹⁸O-SO₄²⁻ ranged from 1.3‰ to 16.3‰ and −3.8‰–8.8‰ in groundwater, and from −1.1‰ to 9.3‰ and 2.7‰–9.2‰ in surface waters, respectively. Analyses of SO₄²⁻ isotopes and water chemistry indicated that SO₄²⁻ in groundwater and surface water mainly originated from mixing of oxidation of sulfate, sewage, chemical fertilizers, dissolution of evaporite and precipitation. There was no significant correlation between δ³⁴S and δ¹⁸O and SO₄²⁻ concentration in groundwater, indicating that bacterial sulfate reduction did not affect the SO₄²⁻ isotopic composition. SIAR model showed the main sources of SO₄²⁻ in groundwater and surface water comprised oxidation of sulfide minerals and sewage. In groundwater, oxidation of sulfide minerals and sewage accounted for 37.5–44.5% and 35.5–42.7% of SO₄²⁻, respectively. In regard to surface waters, the contribution of oxidation of sulfide minerals to SO₄²⁻ was higher in the wet season (31.8 ± 9.9%) than in the intermediate (22.4 ± 7.8%) and dry (20.9 ± 8.2%) seasons, but the contribution proportion of sewage was slightly lower in the wet season (19.9 ± 8.5%) than in the intermediate (23.8 ± 8.7%) and dry (24.2 ± 8.5%) seasons. This study indicates that it is necessary for local government to improve the treatment infrastructure for domestic sewage and optimize methods of agricultural fertilization and irrigation to prevent SO₄²⁻ contamination of groundwater and surface water.
显示更多 [+] 显示较少 [-]Cadmium contamination in agricultural soils of China and the impact on food safety
2019
Wang, Peng | Chen, Hongping | Kopittke, Peter M. | Zhao, Fang-Jie
Rapid industrialization in China during the last three decades has resulted in widespread contamination of Cd in agricultural soils. A considerable proportion of the rice grain grown in some areas of southern China has Cd concentrations exceeding the Chinese food limit, raising widespread concern regarding food safety. In this review, we summarize rice grain Cd concentrations in national Chinese markets and in field surveys from contaminated areas, and analyze the potential health risk associated with increased dietary Cd intake. For subsistence rice farmers living in some contaminated areas of southern China who mainly consume locally-produced Cd-contaminated rice, their estimated dietary Cd intake is now comparable to that for the population in the region of Japan where the Itai-Itai disease was first reported. Interventions must be taken urgently to reduce Cd intake for these farmers. We also analyze i) the main reasons causing elevated grain Cd concentrations in southern China, ii) the dominant biogeochemical processes controlling the solubility of Cd in paddy soils, and iii) molecular mechanisms for the uptake and translocation of Cd in rice plants. Based on these analyses, we propose a number of countermeasures to address soil Cd contamination, including i) mitigation of Cd transfer from paddy soils to rice grain, and ii) intervention in those farmers who consume home-grown Cd-contaminated rice. Liming to increase soil pH to 6.5 and gene editing biotechnology are effective strategies to decrease Cd accumulation in rice grain. For these local farmers with high-Cd exposure risk, local governments should monitor the Cd concentration in their home-grown rice and exchange those high-Cd rice with low-Cd rice in order to reduce their dietary Cd intake.
显示更多 [+] 显示较少 [-]One-century sedimentary record of heavy metal pollution in western Taihu Lake, China
2018
Li, Yan | Zhou, Shenglu | Zhu, Qing | Li, Baojie | Wang, Junxiao | Wang, Chunhui | Chen, Lian | Wu, Shaohua
Long-term trends of sediment compositions are important for assessing the impact of human activities on the sediment and protecting the sediment environment. In this study, based on the contents of heavy metals and the Pb isotope ratios in lake sediments, atmospheric dustfall and soil in Yixing, China, the representative heavy metals (Zn, Pb, Cr and Cd) in lake sediments from western Taihu Lake were studied. The evolution history of heavy metals in the local environment was constructed for the past 100 years. From 1892 to the 1990s, the anthropogenic fluxes of the representative heavy metals were negligible, indicating minimal anthropogenic emissions of heavy metals. Since the 1990s, anthropogenic fluxes of the representative heavy metals began to increase, concurrent with the economic growth and development in the western Taihu Lake Basin after the Chinese economic reform. The maximum flux percentage of the heavy metals in the sediments, caused by human activities, is 23.0% for Zn, 31.6% for Pb, 39.5% for Cr and 85.3% for Cd, indicating that most of the Cd comes from human activities. The Cd content in the western Taihu Lake Basin was significantly higher than that in the other areas, and the rapid development of the industry in the western Taihu Lake Basin and ceramics in Yixing led to the enrichment of heavy metals in local sediments. Since the 21st century, measures have been taken to control the pollution of heavy metals, including the increase in local government attention and the deployment of environmental monitoring technology. However, heavy metal content remains high, and the Pb content is still increasing. The ratios of Pb isotopes show that the main sources of heavy metals in the western Taihu Lake sediments, the local soil of Yixing and the atmospheric dustfall are coal combustion, leaded gasoline combustion, industrial wastewater and domestic sewage.
显示更多 [+] 显示较少 [-]Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia)
2018
Ramírez R., Omar | Sánchez de la Campa, A.M. | Amato, F. (Fulvio) | Catacolí, Ruth A. | Rojas, Néstor Y. | Rosa, Jesús de la
Bogota registers frequent episodes of poor air quality from high PM₁₀ concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM₁₀ source contribution. A characterization of the chemical composition and the source apportionment of PM₁₀ at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO₄²⁻, Cl⁻, NO₃⁻, NH₄⁺), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM₁₀ components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM₁₀, high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM₁₀) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM₁₀ source, accounting for ∼50% of the PM₁₀. The results provided novel data about PM₁₀ chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods.
显示更多 [+] 显示较少 [-]Systematic identification and prioritization of communities impacted by residential woodsmoke in British Columbia, Canada
2017
Hong, Kris Y. | Weichenthal, Scott | Saraswat, Arvind | King, Gavin H. | Henderson, Sarah B. | Bräuer, Michael
Residential woodsmoke is an under-regulated source of fine particulate matter (PM2.5), often surpassing mobile and industrial emissions in rural communities in North America and elsewhere. In the province of British Columbia (BC), Canada, many municipalities are hesitant to adopt stricter regulations for residential wood burning without empirical evidence that smoke is affecting local air quality. The objective of this study was to develop a retrospective algorithm that uses 1-h PM2.5 concentrations and daily temperature data to identify smoky days in order to prioritise communities by smoke impacts. Levoglucosan measurements from one of the smokiest communities were used to establish the most informative values for three algorithmic parameters: the daily standard deviation of 1-h PM2.5 measurements; the daily mean temperature; and the daytime-to-nighttime ratio of PM2.5 concentrations. Alternate parameterizations were tested in 45 sensitivity analyses. Using the most informative parameter values on the most recent two years of data for each community, the number of smoky days ranged from 5 to 277. Heat maps visualizing seasonal and diurnal variation in PM2.5 concentrations showed clear differences between the higher- and lower-ranked communities. Some communities were sensitive to one or more of the parameters, but the overall rankings were consistent across the 45 analyses. This information will allow stakeholder agencies to work with local governments on implementing appropriate intervention strategies for the most smoke-impacted communities.
显示更多 [+] 显示较少 [-]Source apportionment and health effect of NOx over the Pearl River Delta region in southern China
2016
Lu, Xingcheng | Yao, Teng | Li, Ying | Fung, Jimmy C.H. | Lau, Alexis K.H.
As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0–4405) respiratory deaths and 991 (0–2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.
显示更多 [+] 显示较少 [-]Explaining social acceptance of a municipal waste incineration plant through sociodemographic and psycho-environmental variables
2020
Subiza-Pérez, Mikel | Marina, Loreto Santa | Irizar, Amaia | Gallastegi, Mara | Anabitarte, Asier | Urbieta, Nerea | Babarro, Izaro | Molinuevo, Amaia | Vozmediano, Laura | Ibarluzea, Jesús
Municipal waste incineration plants (MWIPs) are a source of emission of diverse pollutants that have been associated with environmental and health effects, mainly in relation to premises that are old and not well equipped or maintained. As a result, the public usually holds a negative view of such plants and tends to react adversely to construction of new plants. Understanding a population’s perceptions is key to ensuring the correct development of such infrastructure and adequately managing population health concerns and behaviours. In this study, we surveyed 173 residents living close (≤ 10 km) to an MWIP being built in San Sebastian (Gipuzkoa, Spain) and 164 living further away (>10 km). The questionnaire included sociodemographic and psycho-environmental measures. Answers to the questionnaire revealed a fairly low acceptance rate and the perception of a high risk for human health and the environment (average scores of 0.57, 3.07 and 2.89 respectively in a 0 to 4 scale), with no statistically significant differences between people living nearby and further afield. A hierarchical regression model built to explore the public’s acceptance of the MWIP explained 59% of the variance. Dominance and relative weight analyses revealed that the most important predictors of acceptance were trust in the information provided by the local government and perceived risk for human health, which accounted for 33.7% and 27.4% of the variance explained by the model respectively. Preference for landfilling and MWIP acceptance in a farther location made a less relevant contribution.
显示更多 [+] 显示较少 [-]PM2.5 and O3 pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts
2020
Zhao, Suping | Yin, Daiying | Yu, Ye | Kang, Shichang | Qin, Dahe | Dong, Longxiang
The strict Clean Air Action Plan has been in place by central and local government in China since 2013 to alleviate haze pollution. In response to implementation of the Plan, daytime PM₂.₅ (particulate matter with aerodynamic diameter less than 2.5 μm) showed significant downward trends from 2015 to 2019, with the largest reduction during spring and winter in the North China Plain. Unlike PM₂.₅, O₃ (ozone) showed a general increasing trend, reaching 29.7 μg m⁻³ on summer afternoons. Increased O₃ and reduced PM₂.₅ simultaneously occurred in more than half of Chinese cities, increasing to approximately three-fourths in summer. Declining trends in both PM₂.₅ and O₃ occurred in only a few cities, varying from 19.1% of cities in summer to 33.7% in fall. Meteorological variables helped to decrease PM₂.₅ and O₃ in some cities and increase PM₂.₅ and O₃ in others, which is closely related to terrain. High wind speed and 24 h changing pressure favored PM₂.₅ dispersion and dilution, especially in winter in southern China. However, O₃ was mainly affected by 24 h maximum temperature over most cities. Soil temperature was found to be a key factor modulating air pollution. Its impact on PM₂.₅ concentrations depended largely on soil depth and seasons; spring and fall soil temperature at 80 cm below the surface had largely negative impacts. Compared with PM₂.₅, O₃ was more significantly affected by soil temperature, with the largest impact at 20 cm below the surface and with less seasonal variation.
显示更多 [+] 显示较少 [-]Biomonitoring of polycyclic aromatic hydrocarbons and synthetic musk compounds with Masson pine (Pinus massoniana L.) needles in Shanghai, China
2019
Wang, Xue-Tong | Zhou, Ying | Hu, Bao-Ping | Fu, Rui | Cheng, Hang-Xin
Twenty-six polycyclic aromatic hydrocarbons (PAHs) and four synthetic musk compounds (SMCs) accumulated by Masson pine needles from different areas of Shanghai were investigated in the present study. Concentrations of Σ26PAHs (sum of 26 PAHs) ranged from 234 × 10−3 to 5370 × 10−3 mg kg−1. Levels of Σ26PAHs in different sampling areas followed the order: urban areas (Puxi and Pudong) > suburbs > Chongming. Total concentrations of 16 USEPA priority PAHs ranged from 225 × 10−3 to 5180 × 10−3 mg kg−1, ranking at a relatively high level compared to other regions around the world. Factor analysis and multi-linear regression model has identified six sources of PAHs with relative contributions of 15.1% for F1 (vehicle emissions), 47.8% for F2 (natural gas and biomass combustion), 7.8% for F3 (oil), 10.6% for F4 (coal combustion), 15.7% for F5 (“anthracene” source) and 3.0% for F6 (coke tar). Total concentrations of 4 SMCs varied between 0.071 × 10−3 and 2.72 × 10−3 mg kg−1 in pine needles from Shanghai. SMCs with the highest detected frequency were Galaxolide and musk xylene, followed by musk ketone and Tonalide. The highest level of SMCs was found near industrial park and daily chemical plant. The results obtained from this study may have important reference value for local government in the control of atmospheric organic pollution.
显示更多 [+] 显示较少 [-]Why small and medium chemical companies continue to pose severe environmental risks in rural China
2014
He, Guizhen | Zhang, Lei | Mol, Arthur P.J. | Wang, Tieyu | Lü, Yonglong
In China, rural chemical SMEs are often believed to still largely operate below the sustainability radar. This paper investigates to what extent and how chemical SMEs are already experiencing pressure to improve their environmental performance, using an in-depth case study in Jasmine County, Hebei province. The results show that local residents had rather low trust in the environmental improvement promises made by the enterprises and the local government, and disagreed with the proposed improvement plans. Although the power of local residents to influence decision making remained limited, the chemical SMEs started to feel increasing pressures to clean up their business, from governments, local communities and civil society, and international value chain stakeholders. Notwithstanding these mounting pressures chemical SME's environmental behavior and performance has not changed radically for the better. The strong economic ties between local county governments and chemical SMEs continue to be a major barrier for stringent environmental regulation.
显示更多 [+] 显示较少 [-]