细化搜索
结果 1-10 的 85
DGT-labile As, Cd, Cu and Ni monitoring in freshwater: Toward a framework for interpretation of in situ deployment
2014
Buzier, Rémy | Charriau, Adeline | Corona, David | Lenain, Jean-François | Fondanèche, Patrice | Joussein, Emmanuel | Poulier, Gaëlle | Lissalde, Sophie | Mazzella, Nicolas | Guibaud, Gilles | Groupement de Recherche Eau, Sol, Environnement (GRESE) ; Université de Limoges (UNILIM) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
International audience | The use of the Diffusive Gradient in Thin Film sampler (DGT) as a monitoring tool for regulatory programs is currently evaluated. In this context, the impact of commonly followed procedures on the accuracy of DGT-labile As, Cd, Cu, and Ni quantification was studied. Initial sampler contamination yields to define quantification limits instead of using blank subtraction, thus avoiding artifact concentrations. Not considering the alteration of element diffusion by the filter membrane leads to significant underestimation. However, diffusion coefficients determined on a non-fouled membrane were found to be suitable for the studied site, making it possible to use data from the literature. When diffusive boundary layer formation is neglected, no loss of accuracy is recorded provided the layer is thinner than 0.5 mm. Finally, exploration of potential biases allowed initiating a framework that might help limit inaccuracies in DGT-labile concentration estimation and interpretation, especially in a low contamination context.
显示更多 [+] 显示较少 [-]Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review
2022
Ulhassan, Zaid | Bhat, Javaid Akhter | Zhou, Weijun | Senan, Ahmed M. | Alam, Pravej | Ahmad, Parvaiz
The excessive arsenic (As) accumulation in plant tissues enforced toxic impacts on growth indices. So, the utilization of As-contaminated food leads to risks associated with human health. For the reduction of As concentrations in foods, it is obligatory to fully apprehend the take up, accretion, transportation and toxicity mechanisms of As within plant parts. This metalloid impairs the plant functions by disturbing the metabolic pathways at physio-biochemical, cellular and molecular levels. Though several approaches were utilized to reduce the As-accumulation and toxicity in soil-plant systems. Recently, engineered nanoparticles (ENPs) such a zinc oxide (ZnO), silicon dioxide or silica (SiO₂), iron oxide (FeO) and copper oxide (CuO) have emerged new technology to reduce the As-accumulation or phytotoxicity. But, the mechanistic approaches with systematic explanation are missing. By knowing these facts, our prime focus was to disclose the mechanisms behind the As toxicity and its mitigation by ENPs in higher plants. ENPs relives As toxicity and its oxidative damages by regulating the transporter or defense genes, modifying the cell wall composition, stimulating the antioxidants defense, phytochelatins biosynthesis, nutrients uptake, regulating the metabolic processes, growth improvement, and thus reduction in As-accumulation or toxicity. Yet, As-detoxification by ENPs depends upon the type and dose of ENPs or As, exposure method, plant species and experimental conditions. We have discussed the recent advances and highlight the knowledge or research gaps in earlier studies along with recommendations. This review may help scientific community to develop strategies such as applications of nano-based fertilizers to limit the As-accumulation and toxicity, thus healthy food production. These outcomes may govern sustainable application of ENPs in agriculture.
显示更多 [+] 显示较少 [-]Fertilizer application in rural cropland drives cadmium enrichment in bats dwelling in an urban area
2018
Liu, Sha | Yu, Wenhua | Li, Feng | Zhao, Jing | Yin, Ru-Yi | Zhou, Zhao-Min | Pan, Bo
The transfer of pollutants from chemical fertilizers through food webs within cropland is well documented; however, its impacts on the wild animals that forage on croplands but roost in other locations remain poorly understood. The potential for this cross-ecosystem ‘spillover’ of pollutants is greatest for bats, some of which exploit urban settlements as roosting niches but must travel long distances to reach croplands as foraging niches. Here, we used hairs from a colony of insectivorous bats, Chinese Noctule (Nyctalus plancyi), from an urban area in Southwest China to assess whether exposure to heavy metals/metalloids by the bats varied from 1975 to 2016. Historical changes occurred in hair cadmium (Cd) concentrations in adult females, which was exclusively explained by the regional fertilizer application intensity (FAI), even considering the potential impacts of Cd emissions in urban areas, as indicated by camphor trees (Cinnamomum camphora) near the bats' roosting niche, and the potential impacts of Cd in industrial wastewater, as documented in authorized databases. Therefore, the data from this bat colony, as urban dwellers, indicates Cd accumulation and cross-ecosystem transfer from rural croplands to an urban area.
显示更多 [+] 显示较少 [-]Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil
2018
Kavehei, Armin | Hose, Grant C. | Gore, Damian B.
Contamination of soils by metals and metalloids is an important environmental problem in many residential and industrial sites around the world. Lead is a common contaminant, which enters the soil through mining, industrial activities and waste disposal. A range of technologies can be used to remediate soil lead, however most remediation technologies adversely affect the environment and particularly soil biota. We have assessed the efficacy of vermiremediation (the use of earthworms for remediation) to reduce water extractable lead concentrations in soil. Earthworms were introduced to a sandy soil spiked with the common lead minerals cotunnite (PbCl2), cerussite (PbCO3), massicot (PbO) or galena (PbS) at 1000 mg (Pb) kg−1. Lead concentrations in pore water extracted during the experiment were not significantly different in contaminated soil with and without worms. However, concentrations of lead in water from a deionised water extraction (washing) of contaminated soil were significantly lower in soil with earthworms than in soil without. Earthworms accumulated on average (±1 standard deviation) 276 ± 118, 235 ± 66, 241 ± 58 and 40 ± 30 mg kg−1 (dry weight of earthworms) of lead in their bodies, in PbCl2, PbCO3, PbO and PbS-dosed soils, respectively. During the experiment, earthworms lost weight in all contaminated soils, except those containing PbS.
显示更多 [+] 显示较少 [-]Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids
2018
Wang, Ying | Wu, Fengchang | Liu, Yuedan | Mu, Yunsong | Giesy, John P. | Meng, Wei | Hu, Qing | Liu, Jing | Dang, Zhi
Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE0 and Xm²r, respectively (R² = 0.988, 0.839, 0.871, P < 0.01). Those models can satisfactorily predict EDs for another 25 metals/metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented.
显示更多 [+] 显示较少 [-]Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children
2017
Lin, Xinjiang | Xu, Xijin | Zeng, Xiang | Xu, Long | Zeng, Zhijun | Huo, Xia
We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P < 0.05). Levels of all vaccine antibodies in the exposed group were significantly lower than in the reference group (P < 0.01). All vaccine antibodies negatively correlated with blood concentrations of Cu, Zn and Pb, based on spearman rank correlation analysis. Multiple logistic regression and univariate analyses identified the location of residence (Guiyu), high blood Pb (>10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines.
显示更多 [+] 显示较少 [-]Assessment of status of three water bodies in Serbia based on tissue metal and metalloid concentration (ICP-OES) and genotoxicity (comet assay)
2016
Sunjog, Karolina | Kolarević, Stoimir | Kračun-Kolarević, Margareta | Višnjić-Jeftić, Željka | Skorić, Stefan | Gačić, Zoran | Lenhardt, Mirjana | Vasić, Nebojša | Vuković-Gačić, Branka
Metals and metalloids are natural components of the biosphere, which are not produced per se by human beings, but whose form and distribution can be affected by human activities. Like all substances, they are a contaminant if present in excess compared to background levels and/or in a form that would not normally occur in the environment. Samples of liver, gills, gonads and muscle from European chub, Squalius cephalus, were analyzed for Al, As, B, Ba, Cr, Cu, Fe, Hg, Mn, Mo, Sr and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of tissue selection in monitoring research. The comet assay or single cell gel electrophoresis (SCGE) was selected as an in vivo genotoxicity assay, a rapid and sensitive method for measuring genotoxic effects in blood, liver and gills of the European chub. Microscopic images of comets were scored using Comet IV Computer Software (Perceptive Instruments, UK).The objective of our study was to investigate two reservoirs, Zlatar and Garasi, and one river, Pestan by: (i) determining and comparing metal and metalloid concentrations in sediment, water and tissues of European chub: liver, gills, muscle and gonads (ii) comparing these findings with genotoxicity of water expressed through DNA damage of fish tissues.A clear link between the level of metals in water, sediment and tissues and between metal and genotoxicity levels at examined sites was not found. This suggests that other xenobiotics (possibly the organic compounds), contribute to DNA damage.
显示更多 [+] 显示较少 [-]The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution
2015
Finger, Annett | Lavers, Jennifer L. | Dann, Peter | Nugegoda, Dayanthi | Orbell, John D. | Robertson, Bruce | Scarpaci, Carol
Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution.
显示更多 [+] 显示较少 [-]Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)
2013
Leveque, Thibaut | Capowiez, Yvan | Schreck, Eva | Mazzia, Christophe | Auffan, Mélanie | Foucault, Yann | Austruy, Annabelle | Dumat, Camille
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris).The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation.
显示更多 [+] 显示较少 [-]Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China
2013
Li, Zhonggen | Feng, Xinbin | Li, Guanghui | Bi, Xiangyang | Zhu, Jianming | Qin, Haibo | Dai, Zhihui | Liu, Jinling | Li, Qiuhua | Sun, Guangyi
A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution.
显示更多 [+] 显示较少 [-]