细化搜索
结果 1-10 的 85
DGT-labile As, Cd, Cu and Ni monitoring in freshwater: Toward a framework for interpretation of in situ deployment 全文
2014
Buzier, Rémy | Charriau, Adeline | Corona, David | Lenain, Jean-François | Fondanèche, Patrice | Joussein, Emmanuel | Poulier, Gaëlle | Lissalde, Sophie | Mazzella, Nicolas | Guibaud, Gilles | Groupement de Recherche Eau, Sol, Environnement (GRESE) ; Université de Limoges (UNILIM) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
International audience | The use of the Diffusive Gradient in Thin Film sampler (DGT) as a monitoring tool for regulatory programs is currently evaluated. In this context, the impact of commonly followed procedures on the accuracy of DGT-labile As, Cd, Cu, and Ni quantification was studied. Initial sampler contamination yields to define quantification limits instead of using blank subtraction, thus avoiding artifact concentrations. Not considering the alteration of element diffusion by the filter membrane leads to significant underestimation. However, diffusion coefficients determined on a non-fouled membrane were found to be suitable for the studied site, making it possible to use data from the literature. When diffusive boundary layer formation is neglected, no loss of accuracy is recorded provided the layer is thinner than 0.5 mm. Finally, exploration of potential biases allowed initiating a framework that might help limit inaccuracies in DGT-labile concentration estimation and interpretation, especially in a low contamination context.
显示更多 [+] 显示较少 [-]Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review 全文
2022
Ulhassan, Zaid | Bhat, Javaid Akhter | Zhou, Weijun | Senan, Ahmed M. | Alam, Pravej | Ahmad, Parvaiz
The excessive arsenic (As) accumulation in plant tissues enforced toxic impacts on growth indices. So, the utilization of As-contaminated food leads to risks associated with human health. For the reduction of As concentrations in foods, it is obligatory to fully apprehend the take up, accretion, transportation and toxicity mechanisms of As within plant parts. This metalloid impairs the plant functions by disturbing the metabolic pathways at physio-biochemical, cellular and molecular levels. Though several approaches were utilized to reduce the As-accumulation and toxicity in soil-plant systems. Recently, engineered nanoparticles (ENPs) such a zinc oxide (ZnO), silicon dioxide or silica (SiO₂), iron oxide (FeO) and copper oxide (CuO) have emerged new technology to reduce the As-accumulation or phytotoxicity. But, the mechanistic approaches with systematic explanation are missing. By knowing these facts, our prime focus was to disclose the mechanisms behind the As toxicity and its mitigation by ENPs in higher plants. ENPs relives As toxicity and its oxidative damages by regulating the transporter or defense genes, modifying the cell wall composition, stimulating the antioxidants defense, phytochelatins biosynthesis, nutrients uptake, regulating the metabolic processes, growth improvement, and thus reduction in As-accumulation or toxicity. Yet, As-detoxification by ENPs depends upon the type and dose of ENPs or As, exposure method, plant species and experimental conditions. We have discussed the recent advances and highlight the knowledge or research gaps in earlier studies along with recommendations. This review may help scientific community to develop strategies such as applications of nano-based fertilizers to limit the As-accumulation and toxicity, thus healthy food production. These outcomes may govern sustainable application of ENPs in agriculture.
显示更多 [+] 显示较少 [-]Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks 全文
2021
Xiao, Enzong | Ning, Zengping | Sun, Weimin | Jiang, Shiming | Fan, Wenjun | Ma, Liang | Xiao, Tangfu
Thallium (Tl) is a highly toxic metalloid and is considered a priority pollutant by the US Environmental Protection Agency (EPA). Currently, few studies have investigated the distribution patterns of bacterial and fungal microbiomes in Tl-impacted environments. In this study, we used high-throughput sequencing to assess the bacterial and fungal profiles along a gradient of Tl contents in Tl mine waste rocks in southwestern China. Our results showed that Tl had an important, but different influence on the bacterial and fungal diversity indices. Using linear regression analysis, we furtherly divided the dominant bacterial and fungal groups into three distinct microbial sub-communities thriving at high, moderate, and low levels of Tl. Furthermore, our results also showed that Tl is also an important environmental variable that regulates the distribution patterns of ecological clusters and indicator genera. Interestingly, the microbial groups enriched in the samples with high Tl levels were mainly involved in metal and nutrient cycling. Taken together, our results have provided useful information about the responses of bacterial and fungal groups to Tl contamination.
显示更多 [+] 显示较少 [-]Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits 全文
2020
Grunst, A.S. | Grunst, M.L. | Bervoets, L. | Pinxten, R. | Eens, M.
Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling design to compare telomere shortening and body condition between nestlings from four urban study sites south of Antwerp, Belgium, which are located at different distances from a metal pollution point source. In addition, we explored associations between metal exposure and telomere dynamics on the individual level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were present at concentrations above the limit of detection. To assess whether roadway-associated stressors (e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or body condition, despite elevated blood lead concentrations close to the metal pollution source (mean ± SE = 0.270 ± 0.095 μg/g wet weight at the most polluted study site), suggesting that nestlings may have some capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather, proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution. Our study highlights that traffic-related pollution, which is implicated in human health problems, might also affect urban wildlife.
显示更多 [+] 显示较少 [-]Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China 全文
2019
Pan, Feng | Liu, Huatai | Guo, Zhanrong | Cai, Yu | Fu, Yuyao | Wu, Jinye | Wang, Bo | Gao, Aiguo
Sediment porewater can be an important source of contaminants in the overlying water, but the mechanisms of metal(loid) and phosphorus (P) remobilization remain to be investigated. In this study, high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) samplers were used to determine the porewater dissolved iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr), vanadium (V), selenium (Se), arsenic (As), P and DGT-Labile S in coastal sediments in the Jiulong River Estuary (JRE), China. The results showed that high concentrations of dissolved Mn, Se and P were present in the overlying water, indicating potential water pollution with excessive amounts of Mn, Se and P. The dissolved Mn concentrations in the porewater were higher than the dissolved Fe concentrations, especially at submerged sites, demonstrating that Mn(III/IV) reduction is the dominant diagenetic pathway for organic carbon (OC) degradation, which directly affects Fe cycling by the competitive inhibition of Fe(III) reduction and Fe(II) reoxidation. Dissolved Co, Cr, V, Se, As and P show significant positive correlations with Mn but nearly no correlations with Fe, suggesting that the mobility of these metal(loid)s and P is associated with Mn but not Fe cycling in this region. In addition, the coelevated concentrations of the metal(loid)s, P and Mn at the submerged sites are attributed to the strengthened Mn reduction coupled with OC degradation fueled by hypoxia. The higher positive diffusion fluxes of Mn, Se and P were consistent with the excess Mn, Se and P concentrations in the overlying water, together with the approximately positive fluxes of the other metal(loid)s, indicating that sediment Mn(III/IV) reduction and concomitant metal(loid) and P remobilization might be vital pathways for metal(loid) and P migration to the overlying water.
显示更多 [+] 显示较少 [-]Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil 全文
2018
Kavehei, Armin | Hose, Grant C. | Gore, Damian B.
Contamination of soils by metals and metalloids is an important environmental problem in many residential and industrial sites around the world. Lead is a common contaminant, which enters the soil through mining, industrial activities and waste disposal. A range of technologies can be used to remediate soil lead, however most remediation technologies adversely affect the environment and particularly soil biota. We have assessed the efficacy of vermiremediation (the use of earthworms for remediation) to reduce water extractable lead concentrations in soil. Earthworms were introduced to a sandy soil spiked with the common lead minerals cotunnite (PbCl2), cerussite (PbCO3), massicot (PbO) or galena (PbS) at 1000 mg (Pb) kg−1. Lead concentrations in pore water extracted during the experiment were not significantly different in contaminated soil with and without worms. However, concentrations of lead in water from a deionised water extraction (washing) of contaminated soil were significantly lower in soil with earthworms than in soil without. Earthworms accumulated on average (±1 standard deviation) 276 ± 118, 235 ± 66, 241 ± 58 and 40 ± 30 mg kg−1 (dry weight of earthworms) of lead in their bodies, in PbCl2, PbCO3, PbO and PbS-dosed soils, respectively. During the experiment, earthworms lost weight in all contaminated soils, except those containing PbS.
显示更多 [+] 显示较少 [-]Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes 全文
2017
Barmentlo, S Henrik | van Gestel, Cornelis A.M. | Álvarez-Rogel, José | González-Alcaraz, M Nazaret
This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) over three generations standardized on physiological time. Generation time was shorter with increasing air temperature and/or soil moisture content. Adult survival was only affected at 30% WHC (∼30% reduction at the highest percentages of polluted soil). Reproduction decreased with increasing percentage of polluted soil in a dose-related manner and over generations. Toxicity increased at 30% WHC (>50% reduction in EC50 in F0 and F1 generations) and over generations in the treatments at 20 °C (40–60% reduction in EC50 in F2 generation). At 25 °C, toxicity did not change when combined with 30% WHC and only slightly increased with 50% WHC. So, higher air temperature and/or reduced soil moisture content does affect the toxicity of soils polluted by metal/metalloid mining wastes to E. crypticus and this effect may exacerbate over generations.
显示更多 [+] 显示较少 [-]Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model 全文
2014
Mu, Yunsong | Wu, Fengchang | Chen, Cheng | Liu, Yuedan | Zhao, Xiaoli | Haiqing Liao, | Giesy, John P.
Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids.
显示更多 [+] 显示较少 [-]Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water – Evaluation of static versus dynamic leaching 全文
2012
Wennrich, Rainer | Daus, Birgit | Müller, Karsten | Stärk, Hans-Joachim | Brüggemann, Lutz | Morgenstern, Peter
The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of Kd values was demonstrated for dynamic leaching which is relevant for environmental processes.
显示更多 [+] 显示较少 [-]Metal and metalloid contamination in roadside soil and wild rats around a Pb–Zn mine in Kabwe, Zambia 全文
2011
Nakayama, Shouta M.M. | Ikenaka, Yoshinori | Hamada, Kyohei | Muzandu, Kaampwe | Choongo, Kennedy | Teraoka, Hiroki | Mizuno, Naoharu | Ishizuka, Mayumi
Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb–Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe.
显示更多 [+] 显示较少 [-]