细化搜索
结果 1-10 的 23
Genotoxic Effect, Oxidative Stress and Cell Death due to Metronidazole Application in Gills and Liver Tissues of Rainbow Trout (Oncorhynchus mykiss)
2022
Gürcü, Beyhan | Koca, Serdar | Başimoğlu Koca, Yucel | Çöllü, Fatih | Tuğlu, Mehmet
In this study, the purpose was to investigate the histopathological, genotoxic effect, oxidative stress and cell death due to Metronidazole (MTZ), which is a 5-nitroimidazole compound used widely for the treatment of anaerobic organism infections in fish and humans on gill and liver tissues of Oncorhynchus mykiss.Trout fishes were exposed to 5, 10, and 20 mg/L of MTZ in the aquariums for 2, 4 and 8 days. Staining technics namely H&E, NOS immunohistochemistry, and TUNEL were performed to determine histopathological changes, oxidative damage and apoptosis. Additionally, smear preparations were also prepared from gill blood for genotoxic evaluations. The organ damage started in the 2nd day with 5 mg/L MTZ application and effects increased per duration and dose-dependent manner. It was observed that the gills had the primary and secondary lamellae lengths, with formation of clavate lamellae, fusion in secondary lamellae, separation of epithelium and aneurysm. Regional necrosis, vacuolization of hepatocytes, pycnotic nucleus, enlarged sinusoids were also determined in the liver. NOS immunoreactivity increased with the inducible immunoreactivity (iNOS) that was more prominent when compared to the endothelial immunoreactivity (eNOS). Apoptotic immunoreactivity was higher in the 10 mg 8th day experimental group at liver and gills, and was lower 20 mg 8th day experimental group. When the gills and liver compared with each other, in all doses, immunoreactivity was lower in gills, compared with liver. Genotoxic examinations showed that both number of micronucleated erythrocytes and nuclei abnormalities were higher in MTZ-treated groups.
显示更多 [+] 显示较少 [-]Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm
2010
Muñoz, Ivan | Martínez Bueno, María J. | Agüera, Ana | Fernández-Alba, Amadeo R.
In this work the risk posed to seawater organisms, predators and humans is assessed, as a consequence of exposure to 12 organic micro-pollutants, namely metronidazole, trimethoprim, erythromycin, simazine, flumequine, carbaryl, atrazine, diuron, terbutryn, irgarol, diphenyl sulphone (DPS) and 2-thiocyanomethylthiobenzothiazole (TCMTB). The risk assessment study is based on a 1-year monitoring study at a Spanish marine fish farm, involving passive sampling techniques. The results showed that the risk threshold for irgarol concerning seawater organisms is exceeded. On the other hand, the risk to predators and especially humans through consumption of fish is very low, due to the low bioconcentration potential of the substances assessed.
显示更多 [+] 显示较少 [-]ZnCo2O4/g-C3N4/Cu nanocomposite as a new efficient and recyclable heterogeneous photocatalyst with enhanced photocatalytic activity towards the metronidazole degradation under the solar light irradiation
2022
Jahanshahi, Roya | Mohammadi, Alieh | Doosti, Mohammadreza | Sobhani, Sara | Sansano, José Miguel
In this study, ZnCo₂O₄/g-C₃N₄/Cu is synthesized as a new and highly effectual solar light-driven heterogeneous photocatalyst. The prepared photocatalyst is characterized using FT-IR, XRD, XPS, DRS, FESEM, TEM, EDS, and elemental mapping techniques. The performance of ZnCo₂O₄/g-C₃N₄/Cu is studied towards the metronidazole (MNZ) degradation under solar light irradiation. The kinetics of MNZ degradation and efficacy of the operational parameters comprising the initial MNZ amount (10–30 mg L⁻¹), photocatalyst dosage (0.005–0.05 g L⁻¹), pH (3–11), and contact time (5–30 min) on the MNZ degradation process are investigated. Surprisingly, the ZnCo₂O₄/g-C₃N₄/Cu nanocomposite presents a privileged photocatalytic performance towards the MNZ degradation under solar light irradiation. The enhanced photocatalytic activity of this photocatalyst can be ascribed to the synergistic optical effects of ZnCo₂O₄, g-C₃N₄, and Cu. The value of band gap energy for ZnCo₂O₄/g-C₃N₄/Cu is estimated to be 2.3 eV based on the Tauc plot of (αhν)² vs. hν. The radical quenching experiments confirm that the superoxide radicals and holes are the principal active species in the photocatalytic degradation of MNZ, whereas the hydroxyl radicals have no major role in such degradation. The as-prepared photocatalyst is simply isolated and recycled for at least eight runs without noticeable loss of the efficiency. Using the natural sunlight source, applying a very low amount of the photocatalyst, neutrality of the reaction medium, short reaction time, high efficiency of the degradation procedure, utilizing air as the oxidant, low operational costs, and easy to recover and reuse of the photocatalyst are the significant highlights of the present method. It is supposed that the current investigation can be a step forward in the representation of an efficacious photocatalytic system in the treatment of a wide range of contaminated aquatic environments.
显示更多 [+] 显示较少 [-]ZnO nanorods/Fe3O4-graphene oxide/metal-organic framework nanocomposite: recyclable and robust photocatalyst for degradation of pharmaceutical pollutants
2021
Chen, Li | Peng, Jun | Wang, Fangqi | Liu, Donghao | Ma, Wenrong | Zhang, Jinmeng | Hu, Wenqing | Li, Ning | Dramou, Pierre | He, Hua
Nanosized semiconductors are widely utilized as solar energy based photocatalyst. However, the deficiencies such as poor adsorption toward contaminants and recyclability issues, rapid recombination of photo-introduced radicals, and deactivation by scavengers are still be the obstacle. To addressing those obstacles, zeolitic imidazolate framework-8 (ZIF-8), photosensitive ZnO, and paramagnetic Fe₃O₄ were anchored on conductive graphene oxide (GO) to prepare a nanocomposite photocatalyst ZnO/Fe₃O₄-GO/ZIF. The photocatalyst showed good robustness to scavengers of hydroxyl radicals (OH•), superoxide radicals (O₂•⁻), and hole (h⁺) with hydrophobic ZIF-8 modified surface. Finally, four pharmaceuticals (sulfamethazine, metronidazole, norfloxacin, and 4-acetaminophen) were degraded rapidly under simulated solar irradiation for 1 h, and the photocatalyst could be recycled at least ten times without obvious deactivation. The final results show that combination of semiconductor, graphene oxide and ZIF-8 is a good idea for construction of efficient photocatalyst. It offers new views in interface modification of nanomaterials, photocatalysis, and adsorption.
显示更多 [+] 显示较少 [-]A Stable Fe2O3/Expanded Perlite Composite Catalyst for Degradation of Rhodamine B in Heterogeneous Photo-Fenton System
2017
Jiang, Lisha | Wang, Junting | Wu, X. (Xiaoyong) | Zhang, Gaoke
A stable and efficient Fe₂O₃/expanded perlite (Fe₂O₃-Ep) composite catalyst was synthesized by a simple hydrothermal method for degradation of refractory contaminants in heterogeneous photo-Fenton system. X-ray diffraction and FT-IR analyses confirmed the presence of the Fe₂O₃ in the synthesized catalyst. The catalytic activity of the Fe₂O₃-Ep catalyst was evaluated by the degradation of rhodamine B (RhB, 5 mg/L) and metronidazole (MET, 5 mg/L) in the presence of H₂O₂ under visible light irradiation. The Fe₂O₃-Ep catalyst exhibited high efficiency for degradation of RhB at a wide pH range from 2 to 10 and showed excellent catalytic property for decomposition of MET as well. The degradation ratio of RhB was achieved 99%, and the removal ratio of COD was 62% within 90 min at the best experimental conditions (0.5 g/L of Fe₂O₃-Ep catalyst, 2 mL/L of H₂O₂). Furthermore, iron leaching of the Fe₂O₃-Ep catalyst during the catalytic degradation reaction was negligible and the catalyst still exhibited high catalytic activity and stability after five cycles. These results show that the catalyst can be used as a highly efficient heterogeneous photo-Fenton catalyst for the degradation of non-biodegradable refractory pollutants in water.
显示更多 [+] 显示较少 [-]Genotypic detection of metronidazole and clarithromycin resistance in dyspeptic patients with helicobacter pylori [Erratum: June 2022, v.29(27); p.41475]
2022
Nemr, Nader | Kishk, Rania M. | Salem, Ayman | Abdalla, Mohamed O. | Abd El-Fadeal, Noha M. | Soliman, Nashaat M.
In Egypt, antibiotic sensitivity analysis for Helicobacter pylori is not routinely performed. We aimed to identify the clarithromycin and metronidazole resistance directly from gastric biopsies for better guide treatment regimens. This cross-sectional descriptive study included 75 adult dyspeptic patients referred to the upper endoscopy unit in Suez Canal University Hospital, Ismailia, Egypt. Gastric biopsies were taken for rapid urease test (RUT) and cultured on brucella agar with antibiotic supplements. Genomic DNA was extracted directly from the specimen, and PCR was performed for direct detection of H. pylori. Also, to explore clarithromycin and metronidazole resistance, mutations in the 23S rRNA gene and the rdxA gene were investigated. We found that 60 samples were positive to RUT (80%), and only 4 samples were positive by culture. UreC gene was detected in 45 specimens. Meanwhile, 26 isolates were contained mutations at positions 2142 and 2143. Amplification of the metronidazole rdx gene was performed by conventional PCR. Out of 45 isolates, DNA sequence analysis of PCR product showed the wild type (ACA) in 9 isolates, while the mutant type (ATA) was detected in 28 isolates. We found a significant proportion of clarithromycin and metronidazole resistance among H. pylori infected patients in our region.
显示更多 [+] 显示较少 [-]Metronidazole enhances steatosis-related early-stage hepatocarcinogenesis in high fat diet-fed rats through DNA double-strand breaks and modulation of autophagy
2022
Eguchi, Ayumi | Mizukami, Sayaka | Nakamura, Misato | Masuda, Sousuke | Murayama, Hirotada | Kawashima, Masashi | Inohana, Mari | Nagahara, Rei | Kobayashi, Mio | Yamashita, Risako | Uomoto, Suzuka | Makino, Emi | Ohtsuka, Ryoichi | Takahashi, Naofumi | Hayashi, Shim-Mo | Maronpot, Robert R. | Shibutani, Makoto | Yoshida, Toshinori
Nonalcoholic fatty liver disease is a hepatic disorder with deposition of fat droplets and has a high risk of progression to steatosis-related hepatitis and irreversible hepatic cancer. Metronidazole (MNZ) is an antiprotozoal and antimicrobial agent widely used to treat patients infected with anaerobic bacteria and intestinal parasites; however, MNZ has also been shown to induce liver tumors in rodents. To investigate the effects of MNZ on steatosis-related early-stage hepatocarcinogenesis, male rats treated with N-nitrosodiethylamine following 2/3 hepatectomy at week 3 were received a control basal diet, high fat diet (HFD), or HFD containing 0.5% MNZ. The HFD induced obesity and steatosis in the liver, accompanied by altered expression of Pparg and Fasn, genes related to lipid metabolism. MNZ increased nuclear translocation of lipid metabolism-related transcription factor peroxisome proliferator-activated receptor gamma in hepatocytes, together with altered liver expression of lipid metabolism genes (Srebf1, Srebf2, Pnpla2). Furthermore, MNZ significantly increased the number of preneoplastic liver foci, accompanied by DNA double-strand breaks and late-stage autophagy inhibition, as reflected by increased levels of γ-H2AX, LC3, and p62. Therefore, MNZ could induce steatosis-related hepatocarcinogenesis by inducing DNA double-strand breaks and modulating autophagy in HFD-fed rats.
显示更多 [+] 显示较少 [-]Efficient photocatalytic degradation of metronidazole from aqueous solutions using Co/g-C3N4/Fe3O4 nanocomposite under visible light irradiation
2022
Yeganeh, Mojtaba | Sobhi, Hamid Reza | Esrafili, Ali
Herein, the efficient degradation of a highly consumed antibiotic known as metronidazole (MNZ) in aqueous solutions using Co/g-C₃N₄/Fe₃O₄ nanocomposite under visible light irradiation was accomplished. Initially, the photocatalyst (Co/g-C₃N₄/Fe₃O₄) was synthesized by a simple hydrothermal method and then characterized by several analytical techniques, namely EDS, SEM, XRD, UV–vis DRS, and FTIR. The efficiency of the synthesized photocatalyst with regard to the degradation of the studied antibiotic (MNZ) under visible light irradiation was fully evaluated. The influential operational parameters affecting the efficiency of the degradation process such as pH (2–10), nanocomposite dosage (0.2–1 g/L), MNZ concentration (5–20 mg/L), and irradiation time (0–80 min) were optimized. The results revealed that the maximum degradation efficiency for MNZ was obtained under the following conditions: irradiation time of 60 min, pH = 8, MNZ concentration of 5 mg/L, and photocatalyst dosage of 0.7 g/L. In addition, the degradation of MNZ followed the pseudo-first-order kinetic model. The best rate constant (k) value was determined to be 0.0102 min⁻¹ with the correlation coefficient (R²) of 0.992. According to the results of the quenching tests, it was found out that hydroxyl radicals (OH°) were the main species responsible for the MNZ degradation. Furthermore, the applied photocatalyst (Co/g-C₃N₄/Fe₃O₄) exhibited a high level of recovery and stability after five cycles of reuse. Co/g-C₃N₄/Fe₃O₄/Vis system exhibited an excellent performance in the treatment of wastewater and real water samples. Finally, it was concluded that the synthesized nanocomposite could be potentially used as a promising and suitable photocatalyst in the degradation of other antibiotics.
显示更多 [+] 显示较少 [-]Optimization of Influential Parameters for the Degradation of Metronidazole Contained in Aquaculture Effluent via Sonocatalytic Process: Kinetics and Mechanism
2022
O.H. Aremu, C.O. Akintayo, S.M. Nelana, M.J. Klink and O.S. Ayanda
This study examined the synthesis of a viable catalyst for the degradation of metronidazole contained in aquaculture effluent. Zinc oxide nanoparticles (n-ZnO) were synthesized via the precipitation method and calcined at 500oC in a muffle furnace to enhance the degradability properties. The morphology showed a hexagonal structure with an average particle size of 71.48 nm and the elemental composition showed a higher weight percent of 59.15% for zinc and 21.65% for oxygen. The FTIR confirms the vibrational characteristic mode of the Zn-O band at 427.21cm-1. The XRD showed a good crystallinity and the BET surface area was 8.58 m2.g-1 which showed that the n-ZnO possesses more active sites that can remove pollutants from wastewater. However, no studies have been done on the removal of MNZ in aquaculture effluent. The kinetics followed pseudo-second-order kinetics and the Langmuir-Hinshelwood model best fit the degradation process with R2, Kc, and KLH values of 0.96781, 1.486 × 10-1 mg. Lmin-1) and 8.790 × 10-2 (L.mg-1). Under the influential parameters, the percentage COD removal achieved for MNZ in aquaculture effluent was 62.6%, 89.8%, and 98.5% of MNZ at 20% ultrasonic amplitude, 5 mL 2% H2O2 and 0.02g n-ZnO within 60 min sonication time for US only, US/n-ZnO and US/n-ZnO/H2O2 systems. Hence, MNZ contained in aquaculture effluent can best be degraded with the synergetic effect of the US/n-ZnO/ H2O2 system.
显示更多 [+] 显示较少 [-]In situ ultrasound-assisted ion exchange synthesis of sphere-like AgClxBr1-x composites with enhanced photocatalytic activity and stability
2020
Abulizi, Abulikemu | Kadeer, Kuerbangnisha | Maimaitizi, Hujiabudula | Tursun, Yalkunjan | Talifu, Dilinuer
AgClₓBr₁₋ₓ composites with different halogen molar ratios (Cl/Br) were prepared by a facile ultrasound-assisted ion-exchange method. The formation of close contact between AgCl and AgBr facilitated the transportation of photoexcited charge carriers and contributed to the enhanced visible-light-driven photocatalytic degradation of different kinds of antibiotics. The AgClₓBr₁₋ₓ composites had a sphere-like morphology and tunable band gaps from 2.95 to 2.57 eV depending on Cl/Br mole ratios. Besides, the AgClₓBr₁₋ₓ composite was optimized by varying halogen mole ratios (Cl/Br) to achieve the highest photocatalytic activity. Results indicated that AgCl₀.₇₅Br₀.₂₅ showed the best photocatalytic degradation performance, which was about 2.36 and 2.78 times that of the single AgCl towards ciprofloxacin (CIP) and metronidazole (MNZ) degradation, respectively. Meanwhile, a possible photocatalytic degradation mechanism was discussed, and results indicated that the holes (h⁺) and •OH were the dominant active species in the AgCl₀.₇₅Br₀.₂₅ system.
显示更多 [+] 显示较少 [-]