细化搜索
结果 1-10 的 114
Agricultural nitrogen and phosphorus balances of Korea and Japan: Highest nutrient surplus among OECD member countries
2021
Im, Chi-yŏn | Islam Bhuiyan, Mohammad Saiful | Lee, Seul Bi | Lee, Jeong Gu | Kim, Pil Joo
Excessive nutrient balance is a very crucial issue for environmental hazards. The constant addition of high-amounts of nutrient sources in agricultural production generates negative environmental conditions in Korea and Japan yet to be resolved. Therefore, it is obligatory to comprehend the nutrient (nitrogen (N) and phosphorus (P)) balance that is assessed by the difference between nutrient input and output in the soil surface in Korea and Japan. Among 34 Economic Co-operation and Development (OECD) countries, Korea and Japan had the highest N and P balances and thus both countries are primarily responsible for severe environmental pollution via nutrient release. The cultivable land area in both countries has constantly decreased during 1990–2017 at approximately 20 and 15% in Korea and Japan, respectively. Even N and P use efficiency sharply decreased with increasing N and P balance in both targeted countries. Japanese P balance, Korean N and P balances were decreased after the mid-1990s whereas, Japanese N balance almost unchanged for the last 28 years. Unlike chemical fertilizer input, Korean manure input level significantly increased from 78 kg N ha⁻¹ in 1990 to 157 kg N ha⁻¹ in 2017. Japanese manure input level was higher than that of chemical fertilizer without any big change for the last 28 years. The lion share of high N and P balance in both countries could generate from manure inputs, therefore, the number of livestock and their produced debris need to be used with more cautious for the reduction of national N and P surpluses at a benchmark level. These findings ensure to make a more environment friendly policy that can further reduce nutrient balance as well as improve soil health.
显示更多 [+] 显示较少 [-]Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities
2019
Liu, Yueying | Deng, Bing | Du, Jinzhou | Zhang, Guosen | Hou, Lijun
High resolution sediment records in the Yangtze Delta front were constructed to reveal recent environmental changes in response to river basin human activities. Increases in nutrient and organic C influxes that began in the 1950s, together with elevated primary productivity and increased chemical fertilizer application, suggested a shift toward anthropogenic-predominated environmental changes during this period. The depletion of total organic C (TOC), total N (TN), and biogenic Si (BSi), along with the decline in sedimentation rate and coarsening of sediment coincided with the development of hydrological engineering in the river basin from the 1980s. Reservoir Si retention substantially altered river mouth primary productivity community composition from diatoms to non-diatoms, thereby changing the BSi/TOC molar ratio in the sediment profile. Estimation of biogenic component burial fluxes was conducted to assess the variation and potential impacts. A recent dramatic decline in biogenic component burial in the delta area suggested a low nutrient removal efficiency in this region, due to the decrease in sediment discharge. Consequently, more nutrients have been further transported to the inner shelf and open waters instead of being buried in the delta sediment, thereby increasing the environmental pressure in the Yangtze Delta and adjoining coastal area.
显示更多 [+] 显示较少 [-]Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry
2019
Sui, Qianwen | Zhang, Junya | Chen, Meixue | Wang, Rui | Wang, Yawei | Wei, Yuansong
Swine waste is a reservoir of microbial pollutants, including pathogens, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB); therefore, soil fertilized with swine waste is an essential pathway for the dissemination of microbial pollutants from concentrated swine farms to the public. To rationalize the intervals of swine wastes application and investigate the effects of soil type on the occurrences of microbial pollutants and antibiotic resistance, pot experiments were conducted with three typical soils, humic acrisol, calcaric cambisols and histosols, being collected from south, northwest and northeast China (soil-R, soil-Y and soil-B, respectively). The soils were amended with swine slurry, digestate and chemical fertilizers and then conducted for 172 days. The influence of microbial pollutants and antibiotic resistance in soil posed by digestate application was similar to that of the chemical fertilizers, while swine slurry posed high risks to the soil. Soil-B which had the highest organic matter and neutral pH was least influenced by the swine slurry amendment. tetG, tetM and ermF were persistent ARGs in the slurry treated soil, and their decay rates fitted to first-order kinetics in the order soil-B> soil-Y > soil-R. Putative pathogens showed strong correlations with ARGs, suggesting a risk of dissemination. The initial 43–82 days was the active phase of microbial pollution in slurry treated soil, during which time heavy metals, moisture content, total organic carbon and the microbial community were key factors contributing to changes in antibiotic resistance. Fertilization intervals of livestock wastes should be lengthened over the ARG active phase.
显示更多 [+] 显示较少 [-]Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice–wheat cropping soil under different fertilization treatments
2019
Hui, Cai | Liu, Bing | Wei, Ran | Jiang, Hui | Zhao, Yuhua | Liang, Yongchao | Zhang, Qichun | Xu, Ligen
Although fertilization plays an important role in determining the contents of soil dissolved organic matters or water-extractable organic matter (DOM, WEOM), knowledge regarding the dynamics, biodegradability, and microbial community shifts of WEOM in response to different fertilization treatments is very limited, particularly in rice–wheat cropping soil. Thus, in the present study, we performed biodegradation experiments using WEOM extracted from samples of soil that had been subjected to four different fertilization treatments: unfertilized control (CK), chemical fertilizer (CF), 50% chemical fertilizer plus pig manure (PMCF), and 100% chemical fertilizer plus rice straw (SRCF). UV spectrum and fluorescence 3D excitation–emission matrix analyses applied to investigate the chemical composition of WEOM revealed that all examined WEOMs were derived from microbial activity and the dominant portion comprised humic acid-like compounds. After the incubation, 31.17, 31.63, 43.47, and 33.01% of soil WEOM from CK, CF, PMCF, and SRCF treatments, respectively, were biodegraded. PMCF- derived WEOM had the highest biodegradation rate. High-throughput sequencing analyses performed to determine the microbial community before and after the incubation indicated that Sphingomonas, Bacillus, and Flavisolibacter were the predominant bacterial genera in the original inoculum derived from the four fertilization treatments. Following biodegradation, we observed that the dominant bacteria differed according to fertilization treatments: Curvibacter (43.25%) and Sphingobium (10.47%) for CK, Curvibacter (29.68%) and Caulobacter (20.00%) for CF, Azospirillum (23.68%) and Caulobacter (13.29%) for PMCF, and Ralstonia (51.75%) for SRCF. Canonical correspondence analysis revealed that, shifts in the microbial community were closely correlated with pH and specific UV absorbance at 254 nm. We speculated that the inherent traits of different WEOM and the properties of soil solutions under different fertilization treatments shaped the soil microbial community structure, thereby influencing the biodegradation of WEOM.
显示更多 [+] 显示较少 [-]Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter
2017
Sun, Fusheng | Li, Yaqing | Wang, Xiang | Chi, Zhilai | Yu, Guanghui
Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29Si nuclear magnetic resonance (NMR), 27Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils.
显示更多 [+] 显示较少 [-]Agricultural ammonia emissions inventory and spatial distribution in the North China Plain
2010
Zhang, Y. | Dore, A.J. | Ma, L. | Liu, X.J. | Ma, W.Q. | Cape, J.N. | Zhang, F.S.
An agricultural ammonia (NH3) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 × 5 km2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH3–N yr−1 for the NCP, accounting for 27% of the total emissions in China. NH3 emission from mineral fertilizer application contributed 1620 kt NH3–N yr−1, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH3 emissions map was developed based on 1 × 1 km land use database and aggregated to a 5 × 5 km grid resolution. The highest emission density value was 198 kg N ha−1 yr−1. The first high-resolution spatial distribution of ammonia emissions for the North China Plain showed rates up to 200 kg NH3–N ha−1 yr−1.
显示更多 [+] 显示较少 [-]Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications
2022
Qing, Li | Qigen, Dai | Jian, Hu | Hongjun, Wu | Jingdu, Chen
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
显示更多 [+] 显示较少 [-]Prediction and mitigation potential of anthropogenic ammonia emissions within the Beijing–Tianjin–Hebei region, China
2020
Guo, Xiurui | Ye, Zhilan | Chen, Dongsheng | Wu, Hongkan | Shen, Yaqian | Liu, Junfang | Cheng, Shuiyuan
Large ammonia (NH₃) emissions contribute approximately 8–30% to the fine particle pollution in China and highlight the need for understanding the emission trends and mitigation effects of NH₃ in the future. The purpose of this study is to predict the NH₃ emissions and analyze the mitigation potential up to year 2040 by scenario analysis based on the established new NH₃ emission inventory from anthropogenic sources for the Beijing–Tianjin–Hebei (BTH) region. The results showed that the total NH₃ emission in the BTH region was estimated at 966.14 Gg in 2016. Under the Business-as-Usual (BAU) scenario, the total NH₃ emissions in 2030 and 2040 would increase by 13% and 26% compared with 2016 levels, with average annual growth rates of 0.9% and 1.0%, respectively. Livestock will continue to dominate NH₃ emissions in the future, with the proportions of total emissions increasing from 57% in 2016 to 64% in 2030 and 68% in 2040. The share of the second-largest NH₃ emission source, synthetic fertilizer application, will decrease from 36% in 2016 to 31% in 2030 and 27% in 2040. Among five other sources, the largest change occurred in waste disposal, increasing notably by 3.31 times from 2016 to 2040 owing to rapid urbanization. Under the Combined Options (CO) scenario, the total NH₃ emissions could be reduced by as much as 34% by 2030 and 50% by 2040 compared with the BAU scenario, which is attributed to livestock (24% in 2030, 37% in 2040) and synthetic fertilizer application (10% in 2030, 13% in 2040), respectively. This study can give a reliable estimation of anthropogenic NH₃ emission in the BTH region during 2020–2040 and provide a valuable reference for effective mitigation measures and control strategies for policy makers.
显示更多 [+] 显示较少 [-]Driving factors of total-factor substitution efficiency of chemical fertilizer input and related environmental regulation policy: A case study of Zhejiang Province
2020
Yang, Jianhui | Lin, Yaoben
Based on the panel data of 63 counties of Zhejiang Province from 2003 to 2017, this paper studied the total-factor substitution efficiency of chemical fertilizer input and its spatial-temporal evolution by using the Super-efficiency DEA(Data Envelopment Analysis) model, locational Gini coefficient and Theil index. And the driving factors of the total-factor substitution efficiency of chemical fertilizer input were analyzed by constructing the Panel Tobit model. The results showed that: the comprehensive efficiency of total-factor substitution for chemical fertilizer input in Zhejiang Province is low, and technical efficiency is the main drive for promoting comprehensive efficiency; Gini coefficient is below the warning line of 0.4, and the difference of substitution efficiency, relatively small, mainly comes from the contribution within the region, and the difference ratio of contribution by the Southwestern Zhejiang is rapidly increasing. In detail, financial investment in agriculture serve as the greatest the driving force, and government chemical fertilizer input subsidies have a significantly negative effect. Therefore, we should improve the subsidy policy system, increase government investment in agricultural infrastructure, adjust the structure of agroindustry and improve the income of rural residents under the premise of reducing the fertilizer input intensity.
显示更多 [+] 显示较少 [-]Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization
2020
Wu, Lei | Hu, Ronggui | Tang, Shuirong | Shaaban, Muhammad | Zhang, Wenju | Shen, Huaping | Xu, Minggang
The incorporation of crop straw with fertilization is beneficial for soil carbon sequestration and cropland fertility improvement. Yet, relatively little is known about how fertilization regulates the emissions of the greenhouse gas nitrous oxide (N₂O) in response to straw incorporation, particularly in soils subjected to long-term fertilization regimes. Herein, the arable soil subjected to a 31-year history of five inorganic or organic fertilizer regimes (unfertilized; chemical fertilizer application, NPK; 200% NPK application, 2 × NPK; manure application, M; NPK plus manure application, NPKM) was incubated with and without rice straw to evaluate how historical fertilization influences the impact of straw addition on N₂O emissions. The results showed that compared to the unfertilized treatment, historical fertilization strongly increased N₂O emissions by 0.48- to 34-fold, resulting from increased contents of hot water-extracted organic carbon (HWEOC), NO₃⁻, and available phosphorus (Olsen-P). Straw addition had little impact on N₂O emission from the unfertilized and NPK treatments, primarily due to Olsen-P limitation. In contrast, straw addition increased N₂O emissions by 102–316% from the 2 × NPK, M, and NPKM treatments as compared to the corresponding straw-unamended treatments. These results indicated that N₂O emissions in response to straw addition were largely regulated by historical fertilization. The N₂O emissions were closely associated with the depletion of NO₃⁻ and decoupled from change in NH₄⁺ content, suggesting that NO₃⁻ was the main substrate for N₂O production upon straw addition. The stoichiometric ratios of HWEOC to mineral N and mineral N to Olsen-P were key factors affecting N₂O emissions, underscoring the importance of resource stoichiometry in regulating N₂O emissions. In conclusion, historical fertilization largely regulated the impacts of crop straw incorporation on N₂O emissions via shifts in NO₃⁻ depletion and the stoichiometry of HWEOC, mineral N, and Olsen-P.
显示更多 [+] 显示较少 [-]