细化搜索
结果 1-10 的 25
Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size
2019
Pierron, Fabien | Daffe, Guillemine | Lambert, Patrick | Couture, Patrice | Baudrimont, Magalie | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre Eau Terre Environnement [Québec] (INRS - ETE) ; Institut National de la Recherche Scientifique [Québec] (INRS) | ANR-16-CE34-0008,TRACE,Effets transgénérationnels des polluants chez les poissons: l'épigénétique et son implication en écotoxicologie(2016)
[Departement_IRSTEA]Eaux [ADD1_IRSTEA]Systèmes aquatiques soumis à des pressions multiples | International audience | Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants. Retrotransposons could represent interesting environment-sensitive molecular markers allowing to link stress-induced molecular events to adverse outcomes at higher levels.
显示更多 [+] 显示较少 [-]Structure and fate of a Pseudomonas aeruginosa population originating from a combined sewer and colonizing a wastewater treatment lagoon
2014
Lavenir, Raphaël | M.-C Petit, Stéphanie | Alliot, Nolwenn | Ribun, Sébastien | Loiseau, Laurence | Marjolet, Laurence | Briolay, Jérôme | Nazaret, Sylvie | Cournoyer, Benoit | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Centre de génétique et de physiologie moléculaire et cellulaire (CGPhiMC) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
International audience | The efficacy of a wastewater treatment lagoon (WWTL) at preventing the spread of Pseudomonas aeruginosa into natural aquatic habitats was investigated. A WWTL and its connected combined sewer and brook were exhaustively sampled. Physico-chemical analyses showed a stratification of the first pond according to pH, temperature and oxygen content. The P. aeruginosa counts partially matched this stratification with higher values among the bottom anaerobic waters of the first half of this pond. Genotyping of 494 WWTL P. aeruginosa strains was performed and led to the definition of 85 lineages. Dominant lineages were observed, with some being found all over the WWTL including the connected brook. IS5 was used as an indicator of genomic changes, and 1 to 12 elements were detected among 16 % of the strains. IS-driven lasR (genetic regulator) disruptions were detected among nine strains that were not part of the dominant lineages. These insertional mutants did not show significant elastase activities but showed better growth than the PAO1 reference strain in WWTL waters. Differences in growth patterns were related to a better survival of these mutants at an alkaline pH and a better ability at using some C-sources such as alanine. The opportunistic colonization of a WWTL by P. aeruginosa can involve several metabolic strategies which appeared lineage specific. Some clones appeared more successful than others at disseminating from a combined sewer toward the overflow of a WWTL.
显示更多 [+] 显示较少 [-]Distribution of rare earth elements (REEs) and their roles in plant growth: A review
2022
Tao, Yue | Shen, Lu | Feng, Chong | Yang, Rongyi | Qu, Jianhua | Ju, Hanxun | Zhang, Ying
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
显示更多 [+] 显示较少 [-]Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers
2019
He, Zhanfei | Wang, Jiaqi | Hu, Jiajie | Yu, Hanqing | Jetten, Mike S.M. | Liu, Huan | Cai, Chaoyang | Liu, Yan | Ren, Hongxing | Zhang, Xu | Hua, Miaolian | Xu, Xinhua | Zheng, Ping | Hu, Baolan
Coastal wetlands are widely recognized as atmospheric methane sources. However, recent field studies suggest that some coastal wetlands could also act as methane sinks, but the mechanism is not yet clear. Here, we investigated methane oxidation with different electron acceptors (i.e., oxygen, nitrate/nitrite, sulfate, Fe(III) and Mn(IV)) in four coastal wetlands in China using a combination of molecular biology methods and isotopic tracing technologies. The geochemical profiles and in situ Gibbs free energies suggest that there was significant nitrite-dependent anaerobic oxidation of methane (nitrite-AOM) in the sub-surface sediments; this was subsequently experimentally verified by both the microbial abundance and activity. Remarkably, the methanotrophic communities seemed to exist in the sediments as layered structures, and the surface aerobic methane-oxidizing bacteria were able to take up atmospheric methane at a rate of 0.10–0.18 nmol CH₄ day⁻¹ cm⁻², while most, if not all, sedimentary methane was being completely consumed by anaerobic methanotrophs (23–58% by methane oxidizers in phylum NC10). These results suggest that coastal methane sinks might be governed by diverse microbial communities where NC10 methane oxidizers contributed significantly. This finding helps to better understand and predict the coastal methane cycle and reduce uncertainties in the estimations of the global methane flux.
显示更多 [+] 显示较少 [-]Double-edged effects of noncoding RNAs in responses to environmental genotoxic insults: Perspectives with regards to molecule-ecology network
2019
Huang, Ruixue | Zhou, PingKun
Numerous recent studies have underlined the crucial players of noncoding RNAs (ncRNAs), i.e., microRNAs(miRNAs), long noncoding RNAs(lncRNAs) and circle RNAs(circRNAs) participating in genotoxic responses induced by a wide variety of environmental genotoxicants consistently. Genotoxic-derived ncRNAs provide us a new epigenetic molecular–ecological network (MEN) insights into the underlying mechanisms regarding genotoxicant exposure and genotoxic effects, which can modify ncRNAs to render them “genotoxic” and inheritable, thus potentially leading to disease risk via epigenetic changes. In fact, the spatial structures of ncRNAs, particularly of secondary and three-dimensional structures, diverse environmental genotoxicants as well as RNA splicing and editing forma dynamic pool of ncRNAs, which constructs a MEN in cells together with their enormous targets and interactions, making biological functions more complicated. We nonetheless suggest that ncRNAs have both beneficial(positive) and harmful(negative) effects, i.e., are “double-edged” in regulating genotoxicant toxic responses. Understanding the “double-edged” effects of ncRNAs is of crucial importance for our further comprehension of the pathogenesis of human diseases induced by environmental toxicants and for the construction of novel prevention and therapy targets. Furthermore, the MEN formed by ncRNAs and their interactions each other as well as downstream targets in the cells is important for considering the active relationships between external agents (environmental toxicants) and inherent genomic ncRNAs, in terms of suppression or promotion (down- or upregulation), and engineered ncRNA therapies can suppress or promote the expression of inherent genomic ncRNAs that are targets of environmental toxicants. Moreover, the MEN would be expected to be would be applied to the mechanistic explanation and risk assessment at whole scene level in environmental genotoxicant exposure. As molecular biology evolves rapidly, the proposed MEN perspective will provide a clearer or more comprehensive holistic view.
显示更多 [+] 显示较少 [-]Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro
2009
Auffan, Mélanie | Rose, Jerome | Wiesner, Mark R. | Bottero, Jean-Yves
The level of production of nanoparticles will inevitably lead to their appearance in air, water, soils, and organisms. A theoretical framework that relates properties of nanoparticles to their biological effects is needed to identify possible risks to human health and the environment. This paper considers the properties of dispersed metallic nanoparticles and highlights the relationship between the chemical stability of these nanoparticles and their in vitro toxicity. Analysis of published data suggests that chemically stable metallic nanoparticles have no significant cellular toxicity, whereas nanoparticles able to be oxidized, reduced or dissolved are cytotoxic and even genotoxic for cellular organisms. The ability of metallic nanoparticles to be oxidized, reduced or dissolved in biological media can be used to predict their toxicity in vitro.
显示更多 [+] 显示较少 [-]Bacterial communities as indicators of environmental pollution by POPs in marine sediments
2021
Rodríguez, Juanjo | Gallampois, Christine M.J. | Haglund, Peter | Timonen, Sari | Rowe, Owen
Decades of intensive discharge from industrial activities into coastal systems has resulted in the accumulation of a variety of persistent organic pollutants (POPs) in marine waters and sediments, having detrimental impacts on aquatic ecosystems and the resident biota. POPs are among the most hazardous chemicals originating from industrial activities due to their biotoxicity and resistance to environmental degradation. Bacterial communities are known to break down many of these aromatic compounds, and different members of naturally occurring bacterial consortia have been described to work in syntrophic association to thrive in heavily contaminated waters and sediments, making them potential candidates as bioindicators of environmental pollution. In this study environmental, sampling was combined with chemical analysis of pollutants and high-resolution sequencing of bacterial communities using Next Generation Sequencing molecular biology tools. The aim of the present study was to describe the bacterial communities from marine sediments containing high loads of POPs and to identify relevant members of the resident microbial communities that may act as bioindicators of contamination. Marine sediments were collected from a coastal bay area of the Baltic Sea historically influenced by intense industrial activity, including metal smelting, oil processing, and pulp and paper production. Different types of POPs were detected at high concentrations. Fiberbank sediments, resulting from historic paper industry activity, were found to harbour a clearly distinct bacterial community including a number of bacterial taxa capable of cellulolytic and dechlorination activities. Our findings indicate that specific members of the bacterial communities thrive under increasing levels of POPs in marine sediments, and that the abundances of certain taxa correlate with specific POPs (or groups), which could potentially be employed in monitoring, status assessment and environmental management purposes.
显示更多 [+] 显示较少 [-]Wavelength-specific artificial light disrupts molecular clock in avian species: A power-calibrated statistical approach
2020
Nighttime lighting is an increasingly important anthropogenic environmental stress on plants and animals. Exposure to unnatural lighting environments may disrupt the circadian rhythm of organisms. However, the sample size of relevant studies, e.g. disruption of the molecular circadian clock by light pollution, was small (<10), which led to low statistical power and difficulties in replicating prior results. Here, we developed a power-calibrated statistical approach to overcome these weaknesses. The results showed that the effect size of 2.48 in clock genes expression induced by artificial light would ensure the reproducibility of the results as high as 80%. Long-wavelength light (560–660 nm) entrained expressions of the positive core clock genes (e.g. cClock) and negative core clock genes (e.g. cCry1, cPer2) in robust circadian rhythmicity, whereas those clock genes were arrhythmic in short-wavelength light (380–480 nm). Further, we found artificial light could entrain the transcriptional-translational feedback loop of the molecular clock in a wavelength-dependent manner. The expression of the positive core clock genes (cBmal1, cBmal2 and cClock), cAanat gene and melatonin were the highest in short-wavelength light and lowest in long-wavelength light. For the negative regulators of the molecular clock (cCry1, cCry2, cPer2 and cPer3), the expression of which was the highest in long-wavelength light and lowest in short-wavelength light. Our statistical approach opens new opportunities to understand and strengthen conclusions, comparing with the studies with small sample sizes. We also provide comprehensive insight into the effect of wavelength-specific artificial light on the circadian rhythm of the molecular clock in avian species. Especially, the global lighting is shifting from “yellow” sodium lamps, which is more like the long-wavelength light, toward short-wavelength light (blue light)-enriched “white” light-emitting diodes (LEDs).
显示更多 [+] 显示较少 [-]Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants
2018
Jäger, Thomas | Alexander, Johannes | Kirchen, Silke | Dötsch, Andreas | Wieland, Arne | Hiller, Christian | Schwartz, Thomas
In respect to direct and indirect water reuse, the microbiological quality of treated wastewater is highly important. Conventional wastewater treatment plants are normally not equipped with advanced technologies for the elimination of bacteria. Molecular biology analyses were combined with live-dead discrimination analysis of wastewater population using Propidium monoazide (PMA) to study population shifts during ozonation (1 g ozone/g DOC) at a municipal wastewater treatment plant. Escherichia coli, enterococci, and Pseudomonas aeruginosa were quantified by polymerase chain reaction (qPCR) and the whole wastewater population was analyzed by metagenomic sequencing. The PMA-qPCR experiments showed that the abundances of P. aeruginosa didn't change by ozone treatment, whereas a reduction was observed for E. coli and enterococci. Results comparing conventional cultivation experiments with PMA-qPCR underlined the presence of viable but not culturable cells (VBNC) and their regrowth potential after ozone treatment. Illumina HiSeq sequencing results with and without PMA treatment demonstrated high population similarities in water samples originating from ozone inflow sampling sides. Upon using PMA treatment after ozonation, population shifts became visible and also underlined the importance of PMA treatment for the evaluation of elimination and selection processes during ozonation at WWTPs. Amongst a number of 14 most abundant genera identified in the inflow samples, 9 genera were found to be reduced, whereas 4 genera increased in relative abundance and 1 genus almost remained constant. The strongest increase in relative abundance after ozonation was detected for Oscillatoria spp., Microcoleus spp. and Nitrospira spp. Beside this, a continuous release of Pseudomonas spp. (including P. aeruginosa) to the downstream receiving body was confirmed. Regrowth experiments demonstrated a high prevalence of P. aeruginosa as part of the surviving bacterial population. Summing up, molecular biology analyses in combination with live-dead discrimination are comprehensive methods to evaluate the elimination processes targeting specific species and/or whole microbial populations.
显示更多 [+] 显示较少 [-]Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea
2018
Lee, Dong Wan | Lee, Hanbyul | Lee, Aslan Hwanhwi | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.
显示更多 [+] 显示较少 [-]