细化搜索
结果 1-10 的 168
137Cs baseline levels in the Mediterranean and Black Sea: A cross-basin survey of the CIESM Mediterranean Mussel Watch programme
2008
Thébault, H. | Baena, A.M., Rodriguez y | Andral, B. | Barisic, D. | Albaladejo, J.B. | Bologa, A.S. | Boudjenoun, R. | Delfanti, R. | Egorov, V.N. | El Khoukhi, T. | Florou, H. | Kniewald, G. | Noureddine, A. | Patrascu, V. | Pham, M.K. | Scarpato, A. | Stokozov, N.A. | Topcuoglu, S. | Warnau, M. | Laboratoire d'étude radioécologique du milieu continental et marin (IRSN/DEI/SESURE/LERCM) ; Service d'étude et de surveillance de la radioactivité dans l'environnement (IRSN/DEI/SESURE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Center for Marine and Environmental Research ; Rudjer Boskovic Institute [Zagreb] | Instituto Español de Oceanografía - Spanish Institute of Oceanography (IEO) ; Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | National Institute for Marine Research and Development "Grigore Antipa" (NIMRD) | Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibile = Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) | NATIONAL ACADEMY OF SCIENCES OF THE UKRAINE KHARKOV UKR ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre National de l'Énergie, des Sciences et des Techniques Nucléaires = National Center for Energy, Science and Nuclear Techniques (CNESTEN) | National Center for Scientific Research "Demokritos" (NCSR) | Marine Environment Laboratories [Monaco] (IAEA-MEL) ; International Atomic Energy Agency [Vienna] (IAEA) | I.C.R.A.M. - Central Institute for Applied Marine Research ; I.C.R.A.M. - Central Institute for Applied Marine Research
International audience | The common mussel Mytilus galloprovincialis was selected as unique biomonitor species to implement a regional monitoring programme, the CIESM Mediterranean Mussel Watch (MMW), in the Mediterranean and Black Seas. As of today, and upon standardization of the methodological approach, the MMW Network has been able to quantify 137Cs levels in mussels from 60 coastal stations and to produce the first distribution map of this artificial radionuclide at the scale of the entire Mediterranean and Black Seas. While measured 137Cs levels were found to be very low (usually <1 Bq kg-1 wet wt) 137Cs activity concentrations in the Black Sea and North Aegean Sea were up to two orders of magnitude higher than those in the western Mediterranean Basin. Such effects, far from representing a threat to human populations or the environment, reflect a persistent signature of the Chernobyl fallout in this area. © 2007 Elsevier Ltd. All rights reserved.
显示更多 [+] 显示较少 [-]Planktonic phase of edible shellfishes (Mytilus galloprovincialis Lamk. and Ostrea edulis L.) in Boka Kotorska Bay [Adriatic sea, Montenegro (Yugoslavia)]
1999
Vukanic, D. (Institut za biologiju mora, Kotor (Yugoslavia))
Reproduction and planktonic phase of life of edible shellfishes, Mytilus galloprovincialis Lamk. and Ostrea edulis L. were the subject of the investigations. Biological and ecological characteristics of mentioned species have been studied in Boka Kotorska Bay (Adriatic Sea), Montenegro (Yugoslavia), having in mind data from the Adriatic Sea and Mediterranean. Beside, some localities from Boka Kotorska Bay, conveniet for their rearing, were described , too. A period of their appearance in plankton was considered before all.
显示更多 [+] 显示较少 [-]Effects of environmental concentrations of the fragrance amyl salicylate on the mediterranean mussel Mytilus galloprovincialis
2022
Bernardini, I. | Fabrello, J. | Vecchiato, M. | Ferraresso, S. | Babbucci, M. | Peruzza, L. | Rovere, G Dalla | Masiero, L. | Marin, M.G. | Bargelloni, L. | Gambaro, A. | Patarnello, T. | Matozzo, V. | Milan, M.
Amyl salicylate (AS) is a fragrance massively used as a personal care product and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L⁻¹). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.
显示更多 [+] 显示较少 [-]Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels
2021
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Cho, Youna | Moon, Yelim | Hong, Sang Hee
Microplastic pollution is emerging as a global environmental issue, and its potential for transferring hazardous chemicals to aquatic organisms is gaining attention. Studies have investigated the transfer of chemicals, mainly sorbed chemicals, through ingestion of microplastics by organisms, but limited information is available regarding chemical additives and uptake via the aqueous route through plastic leaching. In this study, we compared two bioaccumulation pathways of the additive hexabromocyclododecane (HBCD) by exposing mussels (Mytilus galloprovincialis) to two different sizes of expanded polystyrene (EPS): inedible size (4.2–5.5 mm) for leachate uptake and edible size (20–770 μm) for particle ingestion and leachate uptake. Over 10 days, the HBCD concentration increased significantly in mussels in the EPS exposure groups, indicating that EPS microplastic acts as a source of HBCD to mussels. The concentration and isomeric profiles of HBCD in mussels show that uptake through the aqueous phase is a more significant pathway for bioaccumulation of HBCD from EPS to mussels than particle ingestion. HBCD levels measured in EPS, leachate and exposed mussels from this study are environmentally relevant concentration. The fate and effects of chemical additives leached from plastic debris in ecosystem requires further investigation, as it may affect numerous environments and organisms through the aqueous phase.
显示更多 [+] 显示较少 [-]Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis
2017
Yakan, S.D. | Focks, A. | Klasmeier, J. | Okay, O.S.
Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies.
显示更多 [+] 显示较少 [-]Marine heatwaves hamper neuro-immune and oxidative tolerance toward carbamazepine in Mytilus galloprovincialis
2022
Nardi, Alessandro | Mezzelani, Marica | Costa, Silvana | d’Errico, Giuseppe | Benedetti, Maura | Gorbi, Stefania | Freitas, Rosa | Regoli, Francesco
The increased frequency and intensity of short-term extreme warming phenomena have been associated to harsh biological and ecosystem outcomes (i.e., mass mortalities in marine organisms). Marine heatwaves (MHWs), occurring when seasonal temperature threshold is exceeded for at least 5 consecutive days, may reduce the tolerance of coastal species toward additional pressures, but interactions between such multiple stressors are virtually unexplored. The present study aimed to characterize in Mytilus galloprovincialis the influence of a simulated MHW scenario on the toxicological effects of the pharmaceutical carbamazepine (CBZ), ubiquitously detected in the marine environment and chosen as model compound for this relevant class of emerging contaminants. The bioaccumulation of CBZ and responsiveness of various biological parameters, including immune system, antioxidant status, lipid metabolism and cellular integrity, were analyzed in exposed mussels both during and after the end of the heatwave. MHW appeared to strongly modulate accumulation of CBZ, paralleled by weakened immunocompetence and onset of oxidative disturbance that finally evolved to cellular damages and lipid metabolism disorders. Elaboration of the overall results through a quantitative Weight of Evidence model, revealed the highest hazard in organisms exposed to both the stressors 10 days after the end of the heatwave, suggesting that MHWs could leave a footprint on the capability of mussels to counteract CBZ toxicity, thus affecting their vulnerability and predisposition to adverse effects toward multiple stressors.
显示更多 [+] 显示较少 [-]Biochemical alterations caused by lanthanum and gadolinium in Mytilus galloprovincialis after exposure and recovery periods
2022
Cunha, Marta | Louro, Patricia | Silva, Mónica | Soares, Amadeu M.V.M. | Pereira, Eduarda | Freitas, Rosa
The increasing use of rare earth elements (REEs) in electric and electronic equipment has been associated with the presence of these elements in aquatic systems. The present study aimed to evaluate the toxicity of two REEs, Lanthanum (La) and Gadolinium (Gd), towards the mussel species Mytilus galloprovincialis. For this, the toxicity was assessed after a short-term exposure (14 days) to an environmentally relevant concentration of each element (10 μg/L), followed by a recovery period (14 days) in the absence of any contaminant. The measured biomarkers included energy-related parameters, activity of antioxidant and biotransformation enzymes, indicators of oxidative damage, levels of oxidized glutathione and neurotoxicity. After exposure mussels accumulated more La (0.54 μg/g) than Gd (0.15 μg/g). After recovery higher concentration decrease was observed for Gd (≈40% loss) compared to La exposed mussels (≈30% loss) which may be associated with lower detoxification capacity of mussels previously exposed to La. Mussels increased their metabolism (i.e., higher electron transport system activity) only after the exposure to Gd. Exposure to La and Gd resulted into lower energy expenditure, while when both elements were removed glycogen and protein concentrations decreased to values observed in non-contaminated mussels. Antioxidant and biotransformation capacity was mainly increased in the presence of Gd. This defense response avoided the occurrence of cellular damage but still loss of redox balance was found regardless the contaminant, which was re-established after the recovery period. Neurotoxicity was only observed in the presence of Gd with no effects after the recovery period. Results showed that a short-term exposure to La and especially to Gd can exert deleterious effects that may compromise specific biochemical pathways in aquatic species, such as M. galloprovincialis, but under low concentrations organisms can be able to re-establish their biochemical status to control levels after a recovery period.
显示更多 [+] 显示较少 [-]Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures
2021
Queirós, Vanessa | Azeiteiro, Ulisses M. | Barata, Carlos | Santos, Juan Luis | Alonso, Esteban | Soares, Amadeu M.V.M. | Freitas, Rosa
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
显示更多 [+] 显示较少 [-]Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach
2021
Stara, Alzbeta | Pagano, Maria | Albano, Marco | Savoca, Serena | Di Bella, Giuseppa | Albergamo, Ambrogina | Koutkova, Zuzana | Šandová, Marie | Velisek, Josef | Fabrello, Jacopo | Matozzo, Valerio | Faggio, Caterina
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L⁻¹) and 100 times higher than environmental (450 μg L⁻¹) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L⁻¹). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g⁻¹ in the soft tissues of sentinels exposed for 20 days to 450 μg L⁻¹ thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
显示更多 [+] 显示较少 [-]Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
The ongoing increase of CO₂ in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species’ survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
显示更多 [+] 显示较少 [-]