细化搜索
结果 1-10 的 56
The association of co-exposure to polycyclic aromatic hydrocarbon and phthalates with blood cell-based inflammatory biomarkers in children: A panel study
2022
Zhao, Lei | Liu, Miao | Liu, Linlin | Guo, Wenting | Yang, Huihua | Chen, Shuang | Yu, Jie | Li, Meng | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhang, Xiaomin
The association of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) with blood cell-based inflammatory biomarkers is largely unknown. We conducted a panel study of 144 children aged 4–12 years, with up to 3 repeated visits across 3 seasons. For each visit, we collected the first-morning urine for 4 consecutive days and fasting blood on the day of physical examination. We developed a gas chromatography/tandem mass spectrometry method to detect the metabolites of 10 PAHs (OH-PAHs) and 10 PAEs (mPAEs) in urine samples. We employed linear mixed-effects models to evaluate the individual associations of each OH-PAH and mPAE with blood cell-based inflammatory biomarkers over different lag times. Bayesian kernel machine regression (BKMR) and quantile g-computation were used to evaluate the overall associations of OH-PAHs and mPAEs mixtures with blood cell-based inflammatory biomarkers. After multiple adjustments, we found positive associations of summed hydroxylphenanthrene (∑OHPHE), summed OH-PAHs, and mono-n-butyl phthalate with inflammatory biomarkers such as neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index (SII) at lag 0 (the day of physical examination). Each 1% increase in ∑OHPHE was related to a 0.18% (95% confidence interval: 0.10%, 0.25%) increase in SII, which was the strongest among the above associations. The results of BKMR and quantile g-computation suggested that co-exposure to PAHs and PAEs mixture was associated with an elevated white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII, to which ∑OHPHE and 1-hydroxypyrene (1-OHPYR) might be the major contributors. In addition, gender and age modified the associations of ∑OHPHE and 1-OHPYR with inflammatory biomarkers, where girls and younger children were more susceptible. In conclusion, co-exposure to PAHs and PAEs was associated with elevated inflammation in children, in which ∑OHPHE and 1-OHPYR might play important roles.
显示更多 [+] 显示较少 [-]DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy
2020
Yirong, Cao | Shengchen, Wang | Jiaxin, Sun | Shuting, Wang | Ziwei, Zhang
Di (2-ethylhexyl) phthalate (DEHP), a widely spreading environmental endocrine disruptor, has been confirmed to adversely affect the development of animals and humans. The formation of neutrophil extracellular traps (NETs) termed NETosis, is a recently identified antimicrobial mechanism for neutrophils. Though previous researches have investigated inescapable role of the immunotoxicity in DEHP-exposed model, relatively little is known about the effect of DEHP on NETs. In this study, carp peripheral blood neutrophils were treated with 40 and 200 μmol/L DEHP to investigate the underlying mechanisms of DEHP-induced NETs formation. Through the morphological observation of NETs and quantitative analysis of extracellular DNA, we found that DEHP exposure induced NETs formation. Moreover, our results proved that DEHP could increase reactive oxygen species (ROS) levels, decrease the expression of the anti-autophagy factor (mTOR) and the anti-apoptosis gene Bcl-2, and increase the expression of pro-autophagy genes (Dynein, Beclin-1 and LC3B) and the pro-apoptosis factors (BAX, Fas, FasL, Caspase3, Caspase8, and Caspase9), thus promoting autophagy and apoptosis. These results indicate that DEHP-induced ROS burst stimulates NETs formation mediated by autophagy and increases apoptosis in carp neutrophils.
显示更多 [+] 显示较少 [-]Neodymium-containing contrast induces mummification of neutrophil granulocytes
2020
Pleskova, Svetlana | Kryukov, Ruslan | Boryakov, Alexey | Gorshkova, Ekaterina
Recently, chemical compounds containing lanthanides were used in various fields of biology and medicine. It has been described that such compounds can be applied in scanning electron microscopy (SEM) to increase the contrast and simplify the sample preparation process due to the process of replacing calcium with lanthanides in cell. However cell death by different mechanisms under influence of lanthanides seems possible. Here, we described that mummification process is a cell death physiologically realized in time: some time after lanthanide contrasting, the cell remains metabolically active and is able to biochemically transform neodymium-containing contrast, oxidize it and form large agglomerates. A distinctive feature of mummification induced by neodymium-containing contrast (NCC) is the formation of a high-rigid oxygen-containing “shield” on the surface of a neutrophil granulocyte.
显示更多 [+] 显示较少 [-]Hydroquinone exposure alters the morphology of lymphoid organs in vaccinated C57Bl/6 mice
2020
Fabris, André Luis | Nunes, Andre Vinicius | Schuch, Viviane | de Paula-Silva, Marina | Rocha, GHO | Nakaya, Helder I. | Ho, Paulo Lee | Silveira, Eduardo L.V. | Farsky, Sandra Helena Poliselli
The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.
显示更多 [+] 显示较少 [-]Sargassum horneri extract containing mojabanchromanol attenuates the particulate matter exacerbated allergic asthma through reduction of Th2 and Th17 response in mice
2020
Herath, Kalahe Hewage Iresha Nadeeka Madushani | Kim, Hyo-jin | Mihindukulasooriya, Suyama Prasansali | Kim, Areum | Kim, Hyun Jung | Jeon, You-Jin | Jee, Youngheun
Airborne particulate matter (PM) has become a serious health issue causing pulmonary diseases such as asthma. Due to the side effects and non-specificity of conventional drugs, there is a need to develop natural-product-based alternative treatments. Sargassum horneri is a brown alga shown to have anti-oxidant, anti-inflammatory, and anti-allergic effects. Thus, we sought to determine whether ethanol extract of Sargassum horneri (SHE) mitigates the effect of PM exposure on asthma development. To establish a mouse model of asthma, BALB/c mice were sensitized with ovalbumin (OVA, 10 μg) and challenged with PM (5 mg/m³) for 7 days consecutively. SHE (200, 400 mg/kg), Prednisone (5 mg/kg), or PBS was daily administrated orally before PM exposure. SHE mitigated PM exacerbated dendritic cell activation. More importantly, SHE restrained Th2 polarization by attenuating transcription factors GATA3 and STAT5, which further mitigated the expression of Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 in the lung homogenates of PM-exacerbated asthmatic mice. SHE further attenuated PM-exacerbated eosinophil infiltration in the lung, trachea, and BALF. In addition, SHE markedly mitigated the activation of mast cells and the IgE level in serum. Concomitantly, SHE further restrained the Th17 cell response in PM-exposed allergic mice through attenuating expression of transcription factors RORγT, STAT3 and expression of relevant effector cytokines IL-17a. This resulted in mitigated neutrophil infiltration in the lung. Taken together, SHE significantly suppressed PM-exacerbated hypersecretion of mucus in asthmatic mice. These results suggest that SHE has therapeutic potential for treating PM-exacerbated allergic asthma through concomitantly inhibiting Th2/Th17 responses.
显示更多 [+] 显示较少 [-]Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice
2019
Wang, Chaoqun | Wei, Zhengkai | Han, Zhen | Wang, Jingjing | Zhang, Xu | Wang, Yanan | Liu, Quan | Yang, Zhengtao
Cadmium (Cd) is a ubiquitous toxic heavy metal derived mainly from industrial processes. In industrialized societies, individuals are exposed to a plethora of sources of Cd pollution. Cd can trigger serious diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) by the over-activating immune system. As an effector mechanism in innate immunity, neutrophil extracellular traps (NETs) not only play an important role in defending against infection but also lead to tissue damage. However, the role of NETs in Cd-induced lung damage process has not been previously studied. In this study, we aimed to investigate the potential effects of Cd-induced NETs on lung injury in vivo and further to clarify the molecular mechanisms of Cd-induced NETs formation. In vivo, Cd treatment destroyed the structural integrity of lung tissue and significantly increased the levels of NETs in the bronchoalveolar lavage fluid (BALF). The known NETs inhibitor DNase I ameliorated pathologic changes and significantly decreased levels of NETs in BALF, which suggesting the curial role of NETs in Cd-induced lung injury. Further investigation showed that Cd could significantly trigger NETs formation, which is composed of DNA backbone decorated with histones (H3) and neutrophils elastase (NE). The inhibitors of NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways significantly reduced the formation of NETs, and western blotting analysis also showed that Cd significantly increased the phosphorylation of p38 and ERK1/2 signaling pathways. Above results confirmed that NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways were related to Cd-induced NETs formation. In conclusion, NETs was involved in Cd-induced lung injury, and the mechanisms of Cd-induced NETs formation was via activating NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways, which might provide a new perspective in Cd-induced lung injury.
显示更多 [+] 显示较少 [-]Atrazine hinders PMA-induced neutrophil extracellular traps in carp via the promotion of apoptosis and inhibition of ROS burst, autophagy and glycolysis
2018
Wang, Shengchen | Zheng, Shufang | Zhang, Qiaojian | Yang, Zijiang | Yin, Kai | Xu, Shiwen
Atrazine (ATR), a selective herbicide, is consistently used worldwide and has been confirmed to be harmful to the health of aquatic organisms. The release of neutrophil extracellular traps (NETs) is one of the newly discovered antimicrobial mechanisms. Although several immune functions have been analyzed under ATR exposure, the effect of ATR on NETs remains mainly unexplored. In the present study, we treated carp neutrophils using 5 μg/ml ATR and 5 μg/ml ATR combined with 100 nM rapamycin to elucidate the underlying mechanisms and to clarify the effect of ATR on phorbol myristate acetate (PMA)-induced NETs. The results of the morphological observation and quantitative analysis of extracellular DNA and myeloperoxidase (MPO) showed that NETs formation were significantly inhibited by ATR exposure. Moreover, we found that in the NETs process, ATR downregulated the expression of the anti-apoptosis gene B-cell lymphoma-2 (Bcl-2), increased the expression of the pro-apoptosis factors Bcl-2-Associated X (BAX), cysteinyl aspartate specific proteinases (Caspase3, 9), and anti-autophagy factor mammalian target of rapamycin (mTOR), decreased the expression of autophagy-related protein light chain 3B (LC3B) and glucose transport proteins (GLUT1, 4), disturbed the activities of phosphofructokinase (PFK), pyruvate kinase (PKM), and hexokinase (HK) and limited reactive oxygen species (ROS) levels, indicating that the reduced NETs release was a consequence of increased apoptosis and diminished ROS burst, autophagy and down-regulated glycolysis under ATR treatment. Meanwhile, rapamycin restored the inhibited autophagy and glycolysis and thus resisted the ATR-suppressed NETs. The present study perfects the mechanism theory of ATR immunotoxicity to fish and has a certain value for human health risk assessment.
显示更多 [+] 显示较少 [-]Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens
2015
Jovanović, Boris | Whitley, Elizabeth M. | Kimura, Kayoko | Crumpton, Adam | Palić, Dušan
Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration of nano-TiO2 (2 ng g−1 and 10 μg g−1 body weight, respectively), and were challenged with common fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 significantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phagocytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology, and infectious disease pathogenesis in any animal model has not been described before. By modulating fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2 has the potential to affect fish survival in a disease outbreak.
显示更多 [+] 显示较少 [-]The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes
2022
Zhi, Yong | Chen, Xinyu | Cao, Guangxu | Chen, Fengjia | Seo, Ho Seong | Li, Fang
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
显示更多 [+] 显示较少 [-]Toxicokinetics and systematic responses of differently sized indium tin oxide (ITO) particles in mice via oropharyngeal aspiration exposure
2021
Qu, Jing | Wang, Jianli | Zhang, Haopeng | Wu, Jingying | Ma, Xinmo | Wang, Shile | Zang, Yiteng | Huang, Yuhui | Ma, Ying | Cao, Yuna | Wu, Daming | Zhang, Ting
Indium tin oxide (ITO) is an important semiconductor material, because of increasing commercial products consumption and potentially exposed workers worldwide. So, urgently we need to assess and manage potential health risks of ITO. Although the Occupational Exposure Limit (OEL) has been established for ITO exposure, there is still a lack of distinguishing the risks of exposure to particles of different sizes. Therefore, obtaining toxicological data of small-sized particles will help to improve its risk assessment data. Important questions raised in quantitative risk assessments for ITO particles are whether biodistribution of ITO particles is affected by particle size and to what extent systematic adverse responses is subsequently initiated. In order to determine whether this toxicological paradigm for size is relevant in ITO toxic effect, we performed comparative studies on the toxicokinetics and sub-acute toxicity test of ITO in mice. The results indicate both sized-ITO resided in the lung tissue and slowly excreted from the mice, and the smaller size of ITO being cleared more slowly. Only a little ITO was transferred to other organs, especially with higher blood flow. Two type of ITO which deposit in the lung mainly impacts respiratory system and may injure liver or kidney. After sub-acute exposure to ITO, inflammation featured by neutrophils infiltration and fibrosis with both dose and size effects have been observed. Our findings revealed toxicokinetics and dose-dependent pulmonary toxicity in mice via oropharyngeal aspiration exposure, also replenish in vivo risk assessment of ITO. Collectively, these data indicate that under the current OEL, there are potential toxic effects after exposure to the ITO particles. The observed size-dependent biodistribution patterns and toxic effect might be important for approaching the hazard potential of small-sized ITO in an occupational environment.
显示更多 [+] 显示较少 [-]