细化搜索
结果 1-9 的 9
Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
显示更多 [+] 显示较少 [-]Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
显示更多 [+] 显示较少 [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
显示更多 [+] 显示较少 [-]Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction
2019
Xia, Bin | Zhou, Yuhan | Zhu, Qingyang | Zhao, Yingya | Wang, Ying | Ge, Wenzhen | Yang, Qing | Zhao, Yan | Wang, Pengpeng | Si, Jingyi | Luo, Ranran | Li, Jialin | Shi, Huijing | Zhang, Yunhui
Ambient fine particulate matter (PM2.5) pollution has been implicated in the development of hypertensive disorders of pregnancy. However, evidence on the effects of PM2.5-derived chemical constituents on gestational blood pressure (BP) is limited, and the potential mechanisms underlying the association remain unclear. In this study, we repeated three consecutive 72-h personal air sampling and BP measurements in 215 pregnant women for 590 visits during pregnancy. Individual PM2.5 exposure level was assessed by gravimetric method and 28 PM2.5 chemical constituents were analyzed by ED-XRF method. Plasma biomarkers of endothelial function and inflammation were measured using multiplexed immunoassays. Robust multiple linear regression models were used to estimate the associations among personal PM2.5 exposure and chemical constituents, BP changes (compared with pre-pregnancy BP) and plasma biomarkers. Mediation analyses were performed to evaluate underlying potential pathways. Result showed that exposure to PM2.5 was significantly associated with increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) in the early second trimester. Meanwhile, elevated concentration of lead (Pb) constituent in PM2.5 was significant associated with increases in DBP and MAP after adjusting for PM2.5 total mass. PM2.5 and Pb constituent also presented positive associations with plasma biomarkers of endothelial function (ET-1, E-selectin, ICAM-1) and inflammation (IL-1β, IL-6, TNFα) significantly. After multiple adjustment, elevated ET-1 and IL-6 were significantly correlated with increased gestational BP, and respectively mediated 1.24%–25.06% and 7.01%–10.69% of the increased BP due to PM2.5 and Pb constituent exposure. In conclusion, our results suggested that personal exposure to PM2.5 and Pb constituent were significantly associated with increased BP during pregnancy, and the early second trimester might be the sensitive window of PM2.5 exposure. The endothelial dysfunction and elevated inflammation partially mediated the effect of PM2.5 and Pb constituent on BP during pregnancy.
显示更多 [+] 显示较少 [-]Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology
2014
Cakmak, Sabit | Dales, Robert | Kauri, Lisa Marie | Mahmud, Mamun | Van Ryswyk, Keith | Vanos, Jennifer | Liu, Ling | Kumarathasan, Premkumari | Thomson, Errol | Vincent, Renaud | Weichenthal, Scott
Studying the physiologic effects of components of fine particulate mass (PM2.5) could contribute to a better understanding of the nature of toxicity of air pollution.We examined the relation between acute changes in cardiovascular and respiratory function, and PM2.5-associated-metals.Using generalized linear mixed models, daily changes in ambient PM2.5-associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus.Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1–3 beats per minute, increases of 1–3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity.Metals contained in PM2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology.
显示更多 [+] 显示较少 [-]Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter
2013
Michael, S. | Montag, M. | Dott, W.
The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers.
显示更多 [+] 显示较少 [-]Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review
2015
Binelli, A. | Della Torre, C. | Magni, S. | Parolini, M.
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail, we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
显示更多 [+] 显示较少 [-]Influence of dissolved organic nitrogen on Ni bioavailability in Prorocentrum donghaiense and Skeletonema costatum
2015
Huang, Xu-Guang | Li, Hao | Huang, Bang-qin | Liu, Feng-Jiao
Dissolved organic nitrogen (DON) is an important nutrient in the aquatic environment. This study examined the influence of DON addition on the adsorption, absorption, and distribution in macromolecular forms of environmentally deleterious trace metal (Ni) in Prorocentrum donghaiense and Skeletonema costatum over eight days. Ni adsorption and absorption of two species increased with the addition of urea, while Ni adsorption and absorption of two species in the presence of humic substances (HS) decreased. Meanwhile, Ni adsorption and absorption of P. donghaiense were higher than that of S. costatum. Furthermore, Ni contents in the protein fraction of the cells, both in P. donghaiense and S. costatum, were increased with both urea and HS addition. Thus, urea and HS input could impact Ni biogeochemistry and bioavailability, and then affect the biodynamics thereafter.
显示更多 [+] 显示较少 [-]Biomonitoring coastal pollution on the Arabian Gulf and the Gulf of Aden using macroalgae: A review
2022
Ameen, Fuad | Al-Homaidan, Ali A. | Almahasheer, Hanan | Dawoud, Turki | Alwakeel, Suaad | AlMaarofi, Sama
The transporting of oil via the Arabian Gulf for centuries has resulted in the pollution of the coasts by heavy metals, and therefore, remediation actions are needed. In this review, we first evaluated heavy metal pollution on the coasts by assembling the research on published metal concentrations in sediments and water bodies surrounding the Arabian Peninsula. Research revealed uneven pollution of heavy metals, meaning that before remediation, the most polluted sites should be found. This could be done most conveniently using biomonitoring. The Arabian Peninsula is a unique ecoregion due to the extremely high temperature in summer, and therefore, it needs its specific standardization procedure for biomonitoring. To get an overview of the current information on biomonitoring, we gathered a dataset of 306 published macroalgal observations from the Arabian Gulf and the Gulf of Aden. The heavy metal concentration dataset of macroalgae was analyzed with a multivariate principal component analysis. As a result of the published works elsewhere and our data analysis, we recommend that green Ulva and brown Padina species are used in the biomonitoring of heavy metal pollution on the Arabian Peninsula's eastern and southern coasts. However, more species might be needed if these species do not occur at the site. The species incidence should first be monitored systematically in each area, and common species should be used. The species used should be chosen locally and sampled at the same depth at low tide in spring or early summer, from February to May, before the hottest season. The composite samples of different apical sections of the thallus should be collected. The standardization of the monitoring processes benefits future remediation actions.
显示更多 [+] 显示较少 [-]