细化搜索
结果 1-10 的 1,403
La pollution atmospherique en Republique d' Estonie: un grand defi a relever.
1994
Jacquignon P.C.
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
Etude des pluies recueillies en trois points a proximite de Besancon.
1986
Dole S. | Guyetant R. | Martin D. | Remy F. | Reyle R. | Rouault J.Y. | Valero L. | Vidonne A.
Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR) 全文
2022
He, Song | Li, Peiyue | Su, Fengmei | Wang, Dan | Ren, Xiaofei
Groundwater nitrate (NO₃⁻) pollution is a worldwide environmental problem. Therefore, identification and partitioning of its potential sources are of great importance for effective control of groundwater quality. The current study was carried out to identify the potential sources of groundwater NO₃⁻ pollution and determine their apportionment in different land use/land cover (LULC) types in a traditional agricultural area, Weining Plain, in Northwest China. Multiple hydrochemical indices, as well as dual NO₃⁻ isotopes (δ¹⁵N–NO₃ and δ¹⁸O–NO₃), were used to investigate the groundwater quality and its influencing factors. LULC patterns of the study area were first determined by interpreting remote sensing image data collected from the Sentinel-2 satellite, then the Bayesian stable isotope mixing model (MixSIAR) was used to estimate proportional contributions of the potential sources to groundwater NO₃⁻ concentrations. Groundwater quality in the study area was influenced by both natural and anthropogenic factors, with anthropological impact being more important. The results of LULC revealed that the irrigated land is the dominant LULC type in the plain, covering an area of 576.6 km² (57.18% of the total surface study area of the plain). On the other hand, the results of the NO₃⁻ isotopes suggested that manure and sewage (M&S), as well as soil nitrogen (SN), were the major contributors to groundwater NO₃⁻. Moreover, the results obtained from the MixSIAR model showed that the mean proportional contributions of M&S to groundwater NO₃⁻ were 55.5, 43.4, 21.4, and 78.7% in the forest, irrigated, paddy, and urban lands, respectively. While SN showed mean proportional contributions of 29.9, 43.4, 61.5, and 12.7% in the forest, irrigated, paddy, and urban lands, respectively. The current study provides valuable information for local authorities to support sustainable groundwater management in the study region.
显示更多 [+] 显示较少 [-]Analysis of pharmaceuticals, hormones and bacterial communities in a municipal wastewater treatment plant – Comparison of parallel full-scale membrane bioreactor and activated sludge systems 全文
2022
Leiviskä, T. | Risteelä, S.
In this study, the occurrence of pharmaceuticals, hormones and bacterial community structures was studied at a wastewater treatment plant in Finland having two different parallel treatment lines: conventional activated sludge (CAS) treatment with a sedimentation stage, and a membrane bioreactor (MBR). Influent and effluents were sampled seven times over a period of one year. The bacterial communities of the influent samples showed a high degree of similarity, except for the February sample which had substantially lower diversity. There was significant fluctuation in the species richness and diversity of the effluent samples, although both effluents showed a similar trend. A marked decrease in diversity was observed in effluents collected between August and November. The initiation of nitrogen removal as a result of an increase in temperature could explain the changes in microbial community structures. In overall terms, suspended solids, bacteria and total organic matter (COD and BOD) were removed to a greater extent using the MBR, while higher Tot-N, Tot-P and nitrate removal rates were achieved using the CAS treatment. Estrone (E1) concentrations were also consistently at a lower level in the MBR effluents (<0.1–0.68 ng/l) compared to the CAS effluents (1.1–12 ng/l). Due to the high variation in the concentrations of pharmaceuticals, no clear superiority of either process could be demonstrated with certainty. The study highlights the importance of long-term sampling campaigns to detect variations effectively.
显示更多 [+] 显示较少 [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components 全文
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
显示更多 [+] 显示较少 [-]Atmospheric nitrate formation pathways in urban and rural atmosphere of Northeast China: Implications for complicated anthropogenic effects 全文
2022
Li, Zhengjie | Walters, Wendell W. | Hastings, Meredith G. | Song, Linlin | Huang, Shaonan | Zhu, Feifei | Liu, Dongwei | Shi, Guitao | Li, Yilan | Fang, Yunting
Effects of human activities on atmospheric nitrate (NO₃⁻) formation remain unclear, though the knowledge is critical for improving atmospheric chemistry models and nitrogen deposition reduction strategies. A potentially useful way to explore this is to compare NO₃⁻ oxidation processes in urban and rural atmospheres based upon the oxygen stable isotope composition of NO₃⁻ (Δ¹⁷O–NO₃⁻). Here we compared the Δ¹⁷O–NO₃⁻ from three-years of daily-based bulk deposition in urban (Shenyang) and forested rural sites (Qingyuan) in northeast China and quantified the relative contributions of different formation pathways based on the SIAR model. Our results showed that the Δ¹⁷O in Qiangyuan (26.2 ± 3.3‰) is significantly higher (p < 0.001) than in Shenyang (24.0 ± 4.0‰), and significantly higher in winter (Shenyang: 26.1 ± 6.7‰, Qingyuan: 29.6 ± 2.5‰) than in summer (Shenyang: 22.7 ± 2.9‰, Qingyuan: 23.8 ± 2.4‰) in both sites. The lower values in the urban site are linked with conditions that favored a higher relative contribution of nitrogen dioxide reaction with OH pathway (0.76-0.91) than in rural site (0.47-0.62), which should be induced by different levels of human activities in the two sites. The seasonal variations of Δ¹⁷O–NO₃⁻ in both sites are explained by a higher relative contribution of ozone-mediated oxidation chemistry and unfavorable conditions for the OH pathway during winter relative to summer, which is affected by human activities and seasonal meteorological condition change. Based on Δ¹⁷O, wintertime conditions led to a contribution of O₃ related pathways (NO₃ + DMS/HC and N₂O₅ hydrolysis) of 0.63 in Qingyuan and 0.42 in Shenyang, while summertime conditions led to 0.15 in Qingyuan and 0.05 in Shenyang. Our comparative study on Δ¹⁷O–NO₃⁻ between urban and rural sites reveals different anthropogenic effects on nitrate formation processes on spatial and temporal scales, illustrating different responses of reactive nitrogen chemistry to changes in human activities.
显示更多 [+] 显示较少 [-]Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response 全文
2022
Gao, Zhihong | Ali, Amjad | Su, Junfeng | Chang, Qiao | Bai, Yihan | Wang, Yue | Liu, Yu
The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17β-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L⁻¹. Further increased of initial E2 (2 and 3 mg L⁻¹) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.
显示更多 [+] 显示较少 [-]Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides 全文
2022
Tan, Wen-Tao | Zhou, Hang | Tang, Shang-Feng | Zeng, Peng | Gu, Jiao-Feng | Liao, Bo-Han
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron–manganese oxides could be introduced into biochar. In this study, iron–manganese (Fe–Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5–10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe–Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
显示更多 [+] 显示较少 [-]Evaluating the influence of constant source profile presumption on PMF analysis of PM2.5 by comparing long- and short-term hourly observation-based modeling 全文
2022
Xie, Mingjie | Lu, Xinyu | Ding, Feng | Cui, Wangnan | Zhang, Yuanyuan | Feng, Wei
Hourly PM₂.₅ speciation data have been widely used as an input of positive matrix factorization (PMF) model to apportion PM₂.₅ components to specific source-related factors. However, the influence of constant source profile presumption during the observation period is less investigated. In the current work, hourly concentrations of PM₂.₅ water-soluble inorganic ions, bulk organic and elemental carbon, and elements were obtained at an urban site in Nanjing, China from 2017 to 2020. PMF analysis based on observation data during specific pollution (firework combustion, sandstorm, and winter haze) and emission-reduction (COVID-19 pandemic) periods was compared with that using the whole 4-year data set (PMFwₕₒₗₑ). Due to the lack of data variability, event-based PMF solutions did not separate secondary sulfate and nitrate. But they showed better performance in simulating average concentrations and temporal variations of input species, particularly for primary source markers, than the PMFwₕₒₗₑ solution. After removing event data, PMF modeling was conducted for individual months (PMFₘₒₙₜₕ) and the 4-year period (PMF₄₋yₑₐᵣ), respectively. PMFₘₒₙₜₕ solutions reflected varied source profiles and contributions and reproduced monthly variations of input species better than the PMF₄₋yₑₐᵣ solution, but failed to capture seasonal patterns of secondary salts. Additionally, four winter pollution days were selected for hour-by-hour PMF simulations, and three sample sizes (500, 1000, and 2000) were tested using a moving window method. The results showed that using short-term observation data performed better in reflecting immediate changes in primary sources, which will benefit future air quality control when primary PM emissions begin to increase.
显示更多 [+] 显示较少 [-]