细化搜索
结果 1-3 的 3
Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire 全文
2022
Rana, Sahil | Marchiandi, Jaye | Partington, Jordan M. | Szabo, Drew | Heffernan, Amy L. | Symons, Robert K. | Xie, Shay | Clarke, Bradley O.
In 2018, over 30,000 L of fluorine-free firefighting foam was used to extinguish an industrial warehouse fire of uncharacterized chemical and industrial waste. Contaminated firewater and runoff were discharged to an adjacent freshwater creek in Melbourne, Australia. In this study, we applied nontarget analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) to 15 surface water samples to investigate the presence of legacy, novel and emerging per-and polyfluoroalkyl substances (PFAS). We identified six novel and emerging fluorotelomer-based fluorosurfactants in the Australian environment for the first time, including: fluorotelomer sulfonamido betaines (FTABs or FTSA-PrB), fluorotelomer thioether amido sulfonic acids (FTSASs), and fluorotelomer sulfonyl amido sulfonic acids (FTSAS-So). Legacy PFAS including C₆–C₈ perfluoroalkyl sulfonic acids, C₄–C₁₀ perfluoroalkyl carboxylic acids, and perfluoro-4-ethylcyclohexanesulfonate were also detected in surface water. Of note, we report the first environmental detection of ethyl 2-ethenyl-2-fluoro-1-(trifluoromethyl) cyclopropane-1-carboxylate. Analysis of several Class B certified fluorine-free foam formulations allowed for use in Australia revealed that there was no detectable PFAS. Patterns in the homologue profiles of fluorotelomers detected in surface water are consistent with environments impacted by fluorinated aqueous film-forming foams. These results provide strong evidence that firewater runoff of stockpiled fluorinated firefighting foam was the dominant source of detectable PFAS to the surrounding environment.
显示更多 [+] 显示较少 [-]PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats 全文
2019
Le Goff, Manon | Lagadic-Gossmann, Dominique | Latour, Remi | Podechard, Normand | Grova, Nathalie | Gauffre, Fabienne | Chevance, Soizic | Burel, Agnès | Appenzeller, Brice M.R. | Ulmann, Lionel | Sergent, Odile | Le Ferrec, Eric
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects.Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers.To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs.These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
显示更多 [+] 显示较少 [-]Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review 全文
2021
Karimi Estahbanati, M.R. | Kiendrebeogo, Marthe | Khosravanipour Mostafazadeh, Ali | Drogui, Patrick | Tyagi, R.D.
In this work, established treatment processes for microplastics (MPs) and nanoplastics (NPs) in water as well as developed analytical techniques for evaluation of the operation of these processes were reviewed. In this regard, the strengths and limitations of different qualitative and quantitative techniques for the analysis of MPs and NPs in water treatment processes were first discussed. Afterward, the MPs and NPs treatment processes were categorized into the separation and degradation processes and the challenges and opportunities in their performance were analyzed. The evaluation of these processes revealed that the MPs or NPs removal efficiency of the separation and degradation processes could reach up to 99% and 90%, respectively. It can be concluded from this work that the combination of separation and degradation processes could be a promising approach to mineralize MPs and NPs in water with high efficiency.
显示更多 [+] 显示较少 [-]