细化搜索
结果 1-10 的 169
1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
显示更多 [+] 显示较少 [-]Importance of the structure and micropores of sedimentary organic matter in the sorption of phenanthrene and nonylphenol
2020
Xu, Decheng | Hu, Shujie | Xiong, Yongqiang | Yang, Yu | Ran, Yong
The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO₂ and N₂ adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state ¹³C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO₂ micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N₂-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.
显示更多 [+] 显示较少 [-]Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus
2020
Li, Wei | Li, Bengang | Tao, Shu | Ciais, Philippe | Piao, Shilong | Shen, Guofeng | Peng, Shushi | Wang, Rong | Gasser, Thomas | Balkanski, Yves | Li, Laurent | Fu, Bo | Yin, Tianya | Li, Xinyue | An, Jie | Han, Yunman
The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH₃) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. ³¹P nuclear magnetic resonance tests (³¹P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1–2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.
显示更多 [+] 显示较少 [-]Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation
2020
Li, Yu-Xuan | Fu, Huifen | Wang, Peng | Zhao, Chen | Liu, Wen | Wang, Chong-Chen
A facile method was developed to fabricate porous tube-like ZnS by sulfurizing rod-like ZIF-L with thioacetamide (TAA) at different durations and the formation mechanism of the porous tube-like ZnS was discussed in detail. The series of sulfide products (ZS-X) were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance spectroscopy (SSNMR), transmission electron microscopy (TEM), UV–visible diffuse-reflectance spectroscopy (UV–vis DRS). The photocatalytic performances of ZS-X toward Cr(VI) reduction and organic pollutant degradation were explored. It was discovered that ZS-3 (porous tube-like ZnS) exhibited excellent activities under UV light and displayed good reusability and stability after several experimental cycles. In addition, Cr(VI) reduction and organic pollutant degradation were investigated under different pH values and existence of different foreign ions. The photocatalytic activities of ZS-3 were tested toward the matrix of Cr(VI) and reactive red X–3B. The mechanism was proposed and verified by both electrochemical analysis and electron spin resonance (ESR) measurement.
显示更多 [+] 显示较少 [-]Characterization of interactions between a metabolic uncoupler O-chlorophenol and extracellular polymeric substances of activated sludge
2019
Fang, Fang | Xu, Run-Ze | Wang, Su-Na | Zhang, Lu-Lu | Huang, Yan-Qiu | Luo, Jing-Yang | Feng, Qian | Cao, Jia-Shun
Metabolic uncouplers are widely used for the in-situ reduction of excess sludge from activated sludge systems. However, the interaction mechanism between the metabolic uncouplers and extracellular polymeric substances (EPS) of activated sludge is unknown yet. In this study, the interactions between a typical metabolic uncoupler, o-chlorophenol (oCP), and the EPS extracted from activated sludge were explored using a suite of spectral methods. The binding constants calculated for the four peaks of three-dimensional excitation-emission matrix fluorescence were in a range of 1.24–1.76 × 10³ L/mol, implying that the tyrosine protein-like substances governed the oCP-EPS interactions. Furthermore, the results of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and ¹H nuclear magnetic resonance indicated that the carboxyl, carbonyl, amine, and hydroxyl groups of EPS were the main functional groups involved in the formation of the oCP-EPS complex. The results of this study are useful for understanding the interactions between metabolic uncouplers and the EPS of activated sludge as well as their fates in biological wastewater treatment systems.
显示更多 [+] 显示较少 [-]The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway
2018
Dou, Rong-Ni | Wang, Jing-Hao | Chen, Yuan-Cai | Hu, Yong-You
This study systematically explored the effect of humic acid (HA) (as model of natural organic matter) on the kinetics, products and transformation pathway of triclosan (TCS) by laccase-catalyzed oxidation. It was found that TCS could be effectively transformed by laccase-catalysis, with the apparent second-order rate constant being 0.056 U⁻¹ mL min⁻¹. HA inhibited the removal rate of TCS. HA-induced inhibition was negatively correlated with HA concentration in the range of 0–10 mg L⁻¹ and pH-dependent from 3.5 to 9.5. FT-IR and ¹³C NMR spectra showed a decrease of aromatic hydroxyl (phenolic) groups and an increase of aromatic ether groups, indicating the cross-linking of HA via C-O-C and C-N-C bonds during enzyme-catalyzed oxidation. Ten principle oxidative products, including two quinone-like products (2-chlorohydroquinone, 2-chloro-5-(2,4-dichlodichlorophenoxy)-(1,4)benzoquinone), one chlorinated phenol (2,4-dichlorophenol (2,4-DCP)), three dimers, two trimmers and two tetramers, were detected by gas chromatograghy/mass spectrometry (GC-MS) and high performance liquid chromatography/quadrupole time-of-flight/mass spectrometry (HPLC/Q-TOF/MS). The presence of HA induced significantly lesser generation of self-polymers and enhanced cross-coupling between HA and self-polymers via C-O-C, C-N-C and C-C coupling pathways. A plausible transformation pathway was proposed as follows: TCS was initially oxidized to form reactive phenoxyl radicals, which self-coupled to each other subsequently by C-C and C-O pathway, yielding self-polymers. In addition, the scission of ether bond was also observed. The presence of HA can promote scission of ether bond and further oxidation of phenoxyl radicals, forming hydroxylated or quinone-like TCS. This study shed light on the behavior of TCS in natural environment and engineered processes, as well provided a perspective for the water/wastewater treatment using enzyme-catalyzed oxidation techniques.
显示更多 [+] 显示较少 [-]Selective binding behavior of humic acid removal by aluminum coagulation
2018
Jin, Pengkang | Song, Jina | Yang, Lei | Jin, Xin | Wang, Xiaochang C.
The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH < 7, and the reaction rate increased as the pH increased from 2 to 6. While at pH = 7, most of the dosed aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH)₃₍ₛ₎ formation. Differentiating the change of functional groups of HA by ¹H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future.
显示更多 [+] 显示较少 [-]NMR-based metabolic toxicity of low-level Hg exposure to earthworms
2018
Tang, Ronggui | Ding, Changfeng | Dang, Fei | Ma, Yibing | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (¹H-¹³C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
显示更多 [+] 显示较少 [-]Ameliorative effects of boron on aluminum induced variations of cell wall cellulose and pectin components in trifoliate orange (Poncirus trifoliate (L.) Raf.) rootstock
2018
Yan, Lei | Riaz, Muhammad | Wu, Xiuwen | Du, Chenqing | Liu, Yalin | Jiang, Cuncang
Aluminum (Al) phytotoxicity is a major limitation in the production of crops in the soils with pH ≤ 5. Boron (B) is indispensable nutrient for the development of higher plants and B role has been reported in the alleviation Al toxicity. Trifoliate orange rootstock was grown in two B and two Al concentrations. The results of the present study showed that Al toxicity adversely inhibited root elongation and exhibited higher oxidative stress in terms of H2O2 and O2− under B-deficiency. Additionally, the X-ray diffraction (XRD) analysis confirmed the increase of the cellulose crystallinity in the cell wall (CW). Al-induced remarkable variations in the CW components were prominent in terms of alkali-soluble pectin, 2-keto-3-deoxyoctonic acid (KDO) and the degree of methyl-esterification (DME) of pectin. Interesting, B supply reduced the pectin (alkali-soluble) under Al toxicity. Moreover, the results of FTIR (Fourier transform infrared spectroscopy) and 13C-NMR (13C nuclear magnetic resonance) spectra revealed the decrease of carboxyl groups and cellulose by B application during Al exposure. Furthermore, B supply tended to decrease the Al uptake, CW thickness and callose formation. The study concluded that B could mitigate Al phytotoxicity by shielding potential Al binding sites and by reducing Al induced alterations in the CW cellulose and pectin components.
显示更多 [+] 显示较少 [-]Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice
2018
Wu, Sisheng | Jin, Cuiyuan | Wang, Yueyi | Fu, Zhengwei | Jin, Yuanxiang
Propamocarb (PM) is a widely used fungicide with property of affecting fatty acid and phospholipid biosynthesis in funguses. In this study, we explored its effects on mice gut microbiota and metabolism by exposing mice to 3, 30, and 300 mg/L PM through drinking water for a duration of 28 days. We observed that the transcription of hepatic genes related to regulate lipid metabolism were perturbed by PM exposure. The microbiota in the cecal contents and feces changed during or after PM exposure at phylum or genus levels. 16S rRNA gene sequencing for the cecal content revealed shifted in overall microbial structure after PM exposure, and operational taxonomic unit (OTU) analysis indicated that 32.2% of OTUs changed by 300 mg/mL PM exposure for 28 days. In addition, based on 1H NMR analysis,a total of 20 fecal metabolites mainly including succinate, short chain fatty acids, bile acids and trimethylamine were found to be significantly influenced by exposure to 300 mg/L PM.,. These metabolites were tightly correlated to host metabolism. Our findings indicated that high doses of PM exposure could disturb mice metabolism through, or partly through, altering the gut microbiota and microbial metabolites.
显示更多 [+] 显示较少 [-]