细化搜索
结果 1-10 的 1,448
Comparative Study on the Remediation Potential of Panicum Maximum and Axonopus Compressus in Zinc (Zn) Contaminated Soil
2019
Ukoh, S.N.B. | Akinola, M.O. | Njoku, K.L.
Soil contamination by heavy metals has increased noticeably within the past years. Unlike organic compounds, metals cannot degrade; therefore effective cleanup is required to reduce its toxicity. This experiment was undertaken to investigate the comparative potential of Panicum maximum and Axonopus compressus to bioremediate zinc polluted soils, the impact of Zn on the antioxidant defense system of the plant, assaying for activities of antioxidants proteins. Zinc salts were mixed with soil at various concentrations 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg in triplicates and control was setup. After 4 months, the plants (root, shoot and leaf) and soil were analyzed for morphological, biochemical parameters and Zn concentration. The root length of P. maximum and A. compressus decreased as the concentration of zinc increased. The least shoot length inhibition of A. compressus was 6.16% (5 mg/kg) while the highest shoot length inhibition was 40.14% (40 mg/kg). The least shoot length inhibition of Panicum maximum was 6.16% exposed to 5 mg/kg and the highest shoot length inhibition was 53.13% (40 mg/kg). There was significant reduction of the heavy metals in vegetated soils for P. maximum and A. compressus at the end of the study compared to the heavy metals in the soils at the beginning of the study (p<0.05). P. maximum, is a better removal of Zn than A. compressus, however, it was not significant. Glutathione levels varied significantly (p≤ 0.05) with respect to heavy metals. A. compressus has more effects on Glutathione activities than P. maximum. Zn caused a decrease in metallothionein level in P. maximum while A. compressus metallothionein level increased.
显示更多 [+] 显示较少 [-]Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation
2008
Bes, Clémence | Mench, Michel | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)
International audience | Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg−1) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg−1) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production. Three soil amendments, iron grit with compost, calcium oxide, and basic slags, decreased the phytotoxicity of a Cu-contaminated soil.
显示更多 [+] 显示较少 [-]Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching
2006
Ruttens, Ann | Colpaert, J.V. | Mench, Michel | Boisson, J. | Carleer, R. | Vangronsveld, Jaco | Hasselt University (UHasselt) | Biodiversité, Gènes et Ecosystèmes (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB) | IRH Environnement
International audience | A lysimeter approach (under natural climatologic conditions) was used to evaluate the effect of four metal immobilizing soil treatments [compost (C), compost + cyclonic ashes (C + CA), compost + cyclonic ashes + steel shots (C + CA + SS)) and cyclonic ashes + steel shots (CA + SS)] on metal leaching through an industrially contaminated soil. All treatments decreased Zn and Cd leaching. Strongest reductions occurred after CA + SS and C + CA + SS treatments (Zn: -99.0% and -99.2% respectively; Cd: -97.2% and -98.3% respectively). Copper and Pb leaching increased after C (17 and > 30 times for Cu and Pb respectively) and C + CA treatment (4.4 and > 3.7 times for Cu and Pb respectively). C + CA + SS or CA + SS addition did not increase Cu leaching; the effect on Pb leaching was not completely clear. Our results demonstrate that attention should be paid to Cu and Pb leaching when organic matter additions are considered for phytostabilization of metal contaminated soils
显示更多 [+] 显示较少 [-]Coagulation of natural organic matter in groundwater using aluminium salts
1999
Karlovic, E. (Prirodno-matematicki fakultet, Novi Sad (Yugoslavia). Institut za hemiju) | Dalmacija, B. | Zejak, J. | Bajevic, Lj. | Djeric, J. | Djuric, Z.
Removal of natural organic matter (NOM) from groundwater by aluminium sulphate and polyaluminium chloride (PACl) was investigated. The maximal decrease of UV absorbance at 254 nm was near 70%. Decrease of permanganate value about 50% was achieved by PACl coagulation. Similar effect can be achieved using 2.5 fold higher concentration of aluminium sulphate. Coagulation process at pH 5.5 was successful with 3-5 times less concentration of coagulant. The heterogenous composition of NOM in water had been changing by coagulation. The total trihalomethane formation potential is 50-60% lower in coagulated water. The greatest removal was success for chloroform precursors.
显示更多 [+] 显示较少 [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
International audience | This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches.First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties.Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using C-13-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity.These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
显示更多 [+] 显示较少 [-]Removal of organic matter from water using activated carbon produced from domestic [Yugoslav] anthracite
1999
Tamas, Z. | Zejak, J. | Becelic, M. (Prirodno-matematicki fakultet, Novi Sad (Yugoslavia). Institut za hemiju)
Removal of natural organic matter from water was investigated using granulated activated carbon. Groundwater from northern Banat region (Serbia, Yugoslavia) was used. Samples of raw water and water after coagulation were ozonated and than GAC adsorption was performed. The investigation was carried out under the static conditions to determine the GAC adsorption capacity and kinetic coefficients.
显示更多 [+] 显示较少 [-]Towards simple tools to assess functional effects of contaminants on natural microbial and invertebrate sediment communities
2020
Pesce, Stéphane | Campiche, Sophie | Casado-Martinez, Carmen | Ahmed, Ayanleh, Mahamoud | Bonnineau, Chloé | Dabrin, Aymeric | Lyautey, Emilie | Ferrari, Benoit, J D | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Swiss Centre for Applied Ecotoxicology (Ecotox Center) ; Ecole Polytechnique Fédérale de Lausanne (EPFL) | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)
International audience | Surface sediments can accumulate contaminants that affect microorganisms and invertebrates and disturb benthic ecological functions. However, effects of contaminants on ecological functions supported by sediment communities are understudied. Here, we tested the relevance of two simple tools to assess the ecotoxicological effects of metal contamination on natural sediment communities using particulate organic matter breakdown and decomposition as a functional descriptor. To this aim, we performed a 21-day laboratory microcosm experiment to assess the individual and combined effects of Cu and As (nominal concentration of 40 mg kg−1 dw each) using the bait-lamina method (cellulose, bran flakes, and active coal in PVC strips) as well as artificial tablets (cellulose, bran flakes and active coal embedded in an agar matrix). Sediment toxicity was also evaluated using the standardized ostracod toxicity test. Both the bait-lamina and artificial tablet methods showed low effects of As on organic matter breakdown and decomposition but strong effects of Cu on this important ecological function. Both also showed that the presence of Cu and As in mixture in the sediment induced total inhibition of organic matter breakdown and decomposition. The ostracod toxicity test also showed high toxicity of Cu-spiked and Cu-plus-As-spiked sediments and low toxicity of As-spiked sediments. Besides confirming that artificial organic matter substrates are relevant and useful for assessing the functional effects of contaminants on sediment micro-and macro-organism communities, these results suggest that the proposed methods offer promising perspectives for developing tools for use in assessing functional ecotoxicology in the sediment compartment.
显示更多 [+] 显示较少 [-]Organic micropollutants' distribution within sludge organic matter fractions explains their dynamic during sewage sludge anaerobic digestion followed by composting
2019
Aemig, Quentin | Doussiet, Nicolas | Danel, Alice | Delgenes, Nadine | Jimenez, Julie | Houot, Sabine | Patureau, Dominique | Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | ADEME (PhD Grant); AFB (Project n°Action 12-5-1)
International audience | The simultaneous fate of organic matter and 4 endocrine disruptors (3 polycyclic aromatic hydrocarbons (PAHs) (fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene) and nonylphenols (NP)) was studied during the anaerobic digestion followed by composting of sludge at lab-scale. Sludge organic matter was characterized, thanks to chemical fractionation and 3D fluorescence deciphering its accessibility and biodegradability. Total chemical oxygen demand (COD) removal was 41% and 56% during anaerobic digestion and composting, respectively. 3D fluorescence highlighted the quality changes of organic matter. During continuous anaerobic digestion, organic micropollutants' removal was 22±14%, 6±5%, 18±9%, and 0% for fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols, respectively. Discontinuous composting allowed to go further on the organic micropollutants' removal as 34±8%, 31±20%, 38±10%, and 52±6% of fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols were dissipated, respectively. Moreover, the accessibility of PAH and NP expressed by their presence in the various sludge organic matter fractions and its evolution during both treatments was linked to both the quality evolution of the organic matter and the physicochemical properties of the PAH and NP; the presence in most accessible fractions explained the amount of PAH and NP dissipated.
显示更多 [+] 显示较少 [-]The screening of emerging micropollutants in wastewater in Sol Plaatje Municipality, Northern Cape, South Africa
2022
Oluwalana, Abimbola E. | Musvuugwa, Tendai | Sikwila, Stephen T. | Sefadi, Jeremia S. | Whata, Albert | Nindi, Mathew M. | Chaukura, Nhamo
Although pollutants pose environmental and human health risks, the majority are not routinely monitored and regulated. Organic pollutants emanate from a variety of sources, and can be classified depending on their chemistry and environmental fate. Classification of pollutants is important because it informs fate processes and apposite removal technologies. The occurrence of emerging contaminants (ECs) in water bodies is a source of environmental and human health concern globally. Despite being widely reported, data on the occurrence of ECs in South Africa are scarce. Specifically, ECS in wastewater in the Northern Cape in South Africa are understudied. In this study, various ECs were screened in water samples collected from three wastewater treatment plants (WWTPs) in the province. The ECs were detected using liquid chromatography coupled to high resolution Orbitrap mass spectrometry following Oasis HLB solid-phase extraction. The main findings were: (1) there is a wide variety of ECs in the WWTPs, (2) physico-chemical properties such as pH, total dissolved solids, conductivity, and dissolved organic content showed reduced values in the outlet compared to the inlet which confirms the presence of less contaminants in the treated wastewater, (3) specific ultraviolet absorbance of less than 2 was observed in the WWTPs samples, suggesting the presence of natural organic matter (NOM) that is predominantly non-humic in nature, (4) most of the ECs were recalcitrant to the treatment processes, (5) pesticides, recreational drugs, and analgesics constitute a significant proportion of pollutants in wastewater, and (6) NOM removal ranged between 35 and 90%. Consequently, a comprehensive database of ECs in wastewater in Sol Plaatje Municipality was created. Since the detected ECs pose ecotoxicological risks, there is a need to monitor and quantify ECs in WWTPs. These data are useful in selecting suitable monitoring and control strategies at WWTPs.
显示更多 [+] 显示较少 [-]Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox
2022
Ma, Ding | Wang, Jin | Li, Hao | Che, Jian | Yue, Zhengbo
In recent years, Feammox has made it possible to remove NH₄⁺-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH₄⁺-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH₄⁺-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH₄⁺-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0–30 cm) of Lim-UAF, while 60.2% of NH₄⁺-N was removed in the middle layer (30–60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60–90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)₃) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH₄⁺-N, which has excellent application prospects in domestic sewage treatment.
显示更多 [+] 显示较少 [-]