细化搜索
结果 1-10 的 1,451
Comparative Study on the Remediation Potential of Panicum Maximum and Axonopus Compressus in Zinc (Zn) Contaminated Soil
2019
Ukoh, S.N.B. | Akinola, M.O. | Njoku, K.L.
Soil contamination by heavy metals has increased noticeably within the past years. Unlike organic compounds, metals cannot degrade; therefore effective cleanup is required to reduce its toxicity. This experiment was undertaken to investigate the comparative potential of Panicum maximum and Axonopus compressus to bioremediate zinc polluted soils, the impact of Zn on the antioxidant defense system of the plant, assaying for activities of antioxidants proteins. Zinc salts were mixed with soil at various concentrations 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg in triplicates and control was setup. After 4 months, the plants (root, shoot and leaf) and soil were analyzed for morphological, biochemical parameters and Zn concentration. The root length of P. maximum and A. compressus decreased as the concentration of zinc increased. The least shoot length inhibition of A. compressus was 6.16% (5 mg/kg) while the highest shoot length inhibition was 40.14% (40 mg/kg). The least shoot length inhibition of Panicum maximum was 6.16% exposed to 5 mg/kg and the highest shoot length inhibition was 53.13% (40 mg/kg). There was significant reduction of the heavy metals in vegetated soils for P. maximum and A. compressus at the end of the study compared to the heavy metals in the soils at the beginning of the study (p<0.05). P. maximum, is a better removal of Zn than A. compressus, however, it was not significant. Glutathione levels varied significantly (p≤ 0.05) with respect to heavy metals. A. compressus has more effects on Glutathione activities than P. maximum. Zn caused a decrease in metallothionein level in P. maximum while A. compressus metallothionein level increased.
显示更多 [+] 显示较少 [-]Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation
2008
Bes, Clémence | Mench, Michel | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)
International audience | Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg−1) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg−1) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production. Three soil amendments, iron grit with compost, calcium oxide, and basic slags, decreased the phytotoxicity of a Cu-contaminated soil.
显示更多 [+] 显示较少 [-]Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching
2006
Ruttens, Ann | Colpaert, J.V. | Mench, Michel | Boisson, J. | Carleer, R. | Vangronsveld, Jaco | Hasselt University (UHasselt) | Biodiversité, Gènes et Ecosystèmes (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB) | IRH Environnement
International audience | A lysimeter approach (under natural climatologic conditions) was used to evaluate the effect of four metal immobilizing soil treatments [compost (C), compost + cyclonic ashes (C + CA), compost + cyclonic ashes + steel shots (C + CA + SS)) and cyclonic ashes + steel shots (CA + SS)] on metal leaching through an industrially contaminated soil. All treatments decreased Zn and Cd leaching. Strongest reductions occurred after CA + SS and C + CA + SS treatments (Zn: -99.0% and -99.2% respectively; Cd: -97.2% and -98.3% respectively). Copper and Pb leaching increased after C (17 and > 30 times for Cu and Pb respectively) and C + CA treatment (4.4 and > 3.7 times for Cu and Pb respectively). C + CA + SS or CA + SS addition did not increase Cu leaching; the effect on Pb leaching was not completely clear. Our results demonstrate that attention should be paid to Cu and Pb leaching when organic matter additions are considered for phytostabilization of metal contaminated soils
显示更多 [+] 显示较少 [-]Do DOM optical parameters improve the prediction of copper availability in vineyard soils?
2022
Ouédraogo, Frédéric | Cornu, Jean-Yves | Janot, Noémie | Nguyen, Christophe | Sourzac, Mahaut | Parlanti, Edith | Denaix, Laurence | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
International audience | Accumulation of copper (Cu) in soils due to the application of fungicides may be toxic for organisms and hence affect winegrowing sustainability. Soil parameters such as pH and dissolved organic matter (DOM) are known to affect the availability of Cu. In this study, we investigated the contribution of chromophoric and fluorescent DOM properties to the prediction of Cu availability in 18 organic vineyard soils in the Bordeaux winegrowing area (France). The DOM parameters, assessed through absorbance and fluorescence analyses, and proxies for Cu availability (total soluble Cu and free ionic Cu2+) were measured in 0.01 M KCl extracts. Total soluble Cu (CuKCl) varied 23-fold while free ionic Cu2+ varied by a factor of 4600 among the soils. DOC concentrations were similar among the soils, but the samples differed in the quality of DOM as assessed by optical spectroscopy. Multilinear regression models with and without DOM quality parameters were investigated to predict Cu availability. The best model for CuKCl successfully explained 83% of variance and included pH, CuT, and two DOM fluorescence quality indices, the FI fluorescence index, which distinguishes between microbial and higher plant origins, and the HIX humification index. For the prediction of Cu2+, pH alone explained 88% of variance and adding DOM parameters did not improve modelling. The two Cu availability proxies were related to pH. This study confirms the prominent role of pH in Cu availability and underlines the importance of DOM quality to better predict Cu solubility
显示更多 [+] 显示较少 [-]Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system
2022
Li, Benhang | Xu, Dandan | Feng, Li | Liu, Yongze | Zhang, Liqiu
Energy resource scarcity and sediment pollution perniciousness have become enormous challenges, to which research has been focused on energy recovery and recycle technologies to solve both above problems. The organic matter stored in anoxic sediments of freshwater ecosystem represents a tremendous potential energy source. The system of aquatic plant coupled with sediment microbial fuel cell (AP-SMFC) has attracted much attention as a more feasible, economical and eco-friendly way to remediate sediment and surface water and generate electricity. However, the research on AP-SMFC has only been carried out in the last decade, and relevant studies have not been well summarized. In this review, the advances and prospects on AP-SMFC were systematically introduced. Firstly, the annual publication counts and keywords co-occurrence cluster of AP-SMFC were identified and visualized by resorting to the CiteSpace software, and the result showed that the research on AP-SMFC increased significantly in the last decade on the whole and will continue to increase. The bibliometric results provided valuable references and information on potential research directions for future studies. And then, the research progress and reaction mechanism of AP-SMFC were systematically described. Thirdly, the performance of AP-SMFC, including nutrients removal, organic contaminants removal, and electricity generation, was systematically summarized. AP-SMFC can enhance the removal of pollutants and electricity generation compared with SMFC without AP, and is considered to be an ideal technology for pollutants removal and resource recovery. Finally, the current challenges and future perspectives were summarized and prospected. Therefore, the review could serve as a guide for the new entrants to the field and further development of AP-SMFC application.
显示更多 [+] 显示较少 [-]Analysis of pharmaceuticals, hormones and bacterial communities in a municipal wastewater treatment plant – Comparison of parallel full-scale membrane bioreactor and activated sludge systems
2022
Leiviskä, T. | Risteelä, S.
In this study, the occurrence of pharmaceuticals, hormones and bacterial community structures was studied at a wastewater treatment plant in Finland having two different parallel treatment lines: conventional activated sludge (CAS) treatment with a sedimentation stage, and a membrane bioreactor (MBR). Influent and effluents were sampled seven times over a period of one year. The bacterial communities of the influent samples showed a high degree of similarity, except for the February sample which had substantially lower diversity. There was significant fluctuation in the species richness and diversity of the effluent samples, although both effluents showed a similar trend. A marked decrease in diversity was observed in effluents collected between August and November. The initiation of nitrogen removal as a result of an increase in temperature could explain the changes in microbial community structures. In overall terms, suspended solids, bacteria and total organic matter (COD and BOD) were removed to a greater extent using the MBR, while higher Tot-N, Tot-P and nitrate removal rates were achieved using the CAS treatment. Estrone (E1) concentrations were also consistently at a lower level in the MBR effluents (<0.1–0.68 ng/l) compared to the CAS effluents (1.1–12 ng/l). Due to the high variation in the concentrations of pharmaceuticals, no clear superiority of either process could be demonstrated with certainty. The study highlights the importance of long-term sampling campaigns to detect variations effectively.
显示更多 [+] 显示较少 [-]Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
显示更多 [+] 显示较少 [-]Historical trends in atmospheric metal(loid) contamination in North China over the past half-millennium reconstructed from subalpine lake sediment
2022
Liang, Mengyao | Liu, Enfeng | Wang, Xiaoyu | Zhang, Qinghui | Xu, Jinling | Ji, Ming | Zhang, Enlou
Trace metal (loid) contamination in the atmosphere is widely monitored, but there is a gap in understanding its long-term patterns, especially in North China, which is currently a global contamination hotspot mainly caused by heavy industry emissions and coal combustion. Herein, historical trends of atmospheric As, Cd, Cr, Cu, Hg, Ni, Pb and Zn contamination in North China over the past ∼500 years are comparatively studied with sediment cores from two subalpine lakes (Gonghai and Muhai). Arsenic, Pb, Cd and Hg were main pollutants according to Pb isotopes and enrichment factors. Mercury contamination has increased continuously since the late 1800s and increasing As, Pb and Cd contamination started in the 1950s in Gonghai. In contrast, the contamination in Muhai lagged two decades for As, Cd and Pb and a half-century for Hg behind that in Gonghai, although the trends were similar. This contamination lag was attributed to the low sensitivity of Muhai sediment to early weak atmospheric metal contamination under 2.1-fold higher detrital sedimentation. As, Pb and Cd contamination has intensified since the 1980s, and the metals showed similar sedimentary fluxes in the cores. However, sedimentary fluxes of Hg contamination were 3.4-fold higher in Gonghai than in Muhai due to combination with organic matter. No obvious Cr, Cu and Ni contamination in the cores was mainly because of the low atmospheric deposition from anthropogenic sources relative to detrital input, although some of their atmospheric emissions were higher than those of As, Cd and Hg. Atmospheric As, Pb and Cd contamination was mainly from domestic sources of coal combustion and nonferrous smelting. Mercury contamination was mainly from global and Asian sources in the first half of the 20th century, and domestic emissions gradually dominated Hg contamination after the mid-1900s.
显示更多 [+] 显示较少 [-]Is there a similarity between the 2019 and 2022 oil spills that occurred on the coast of Ceará (Northeast Brazil)? An analysis based on forensic environmental geochemistry
2022
de Azevedo, Rufino Neto A. | Bezerra, Kamylla M.M. | Nascimento, Ronaldo F. | Nelson, Robert K. | Reddy, Christopher M. | do Nascimento, Adriana P. | Oliveira, André H.B. | Martins, Laercio L. | Cavalcante, Rivelino M.
The main objective of this study was to investigate the 2019 and 2022 oil spill events that occurred off the coast of the State of Ceará, Northeastern Brazil. To further assess these mysterious oil spills, we investigated whether the oils stranded on the beaches of Ceará in 2019 and 2022 had the same origin, whether their compositional differences were due to weathering processes, and whether the materials from both were natural or industrially processed. We collected oil samples in October 2019 and January 2022, soon after their appearance on the beaches. We applied a forensic environmental geochemistry approach using both one-dimensional and two-dimensional gas chromatography to assess chemical composition. The collected material had characteristics of crude oil and not refined oils. In addition, the 2022 oil samples collected over 130 km of the east coast of Ceará had a similar chemical profile and were thus considered to originate from the same source. However, these oils had distinct biomarker profiles compared to those of the 2019 oils, including resistant terpanes and triaromatic steranes, thus excluding the hypothesis that the oil that reached the coast of Ceará in January 2022 is related to the tragedy that occurred in 2019. From a geochemical perspective, the oil released in 2019 is more thermally mature than that released in 2022, with both having source rocks with distinct types of organic matter and depositional environments. As the coast of Ceará has vast ecological diversity and Marine Protected Areas, the possibility of occasional oil spills in the area causing severe environmental pollution should be investigated from multiple perspectives, including forensic environmental geochemistry.
显示更多 [+] 显示较少 [-]Role of the sedimentary organic matter structure and microporosity on the degradation of nonylphenol by potassium ferrate
2022
Zhang, Yongli | Kong, Xianglan | Yang, Yu | Ran, Yong
In this study, the role of organic matter structure and microporosity in the adsorption and degradation of radioactive nonylphenol in sediments treated with potassium ferrate solutions was investigated. The demineralized fractions and acid non-hydrolyzable fractions were isolated and characterized via advanced solid-state ¹³C nuclear magnetic resonance and CO₂ gas adsorption technology, respectively. Radioactive nonylphenol in the sediments was also fractionated into ¹⁴CO₂, water-soluble residues, extractable residues, and strongly bound residues after treatment with potassium ferrate. A first-order, two-compartment kinetic model well described the mineralization and degradation kinetics of radioactive nonylphenol in the sediment (R² > 0.99). The degradation percentages of spiked nonylphenol were highly negatively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R² > 0.82, p < 0.01). The percentages of adsorbed parent nonylphenol residues were highly positively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R² > 0.90, p < 0.01). The parent nonylphenol compound desorbed into the aqueous phase and was completely degraded. This study is the first to demonstrate the important role of aromatic carbon, aliphatic carbon, and microporosity in acid non-hydrolyzable fractions on the degradation of nonylphenol during the potassium ferrate oxidation treatment process.
显示更多 [+] 显示较少 [-]