细化搜索
结果 1-10 的 31
Phosphorus compounds in the dissolved and particulate phases in urban rivers and a downstream eutrophic lake as analyzed using 31P NMR 全文
2021
Hafuka, Akira | Tsubokawa, Yoichi | Shinohara, Ryuichiro | Kimura, Katsuki
Phosphorus (P) discharges from human activities result in eutrophication of lakes. We investigated whether the forms of phosphorus (P) in rivers with high effluent loads flowing through urban areas of Sapporo, Japan, were transformed when transported downstream into a eutrophic lake, namely Lake Barato. We hypothesized that the inorganic P supplied from the rivers might be transformed to organic forms in the lake. The results showed that soluble reactive phosphorus (SRP) and particulate inorganic phosphorus (PIP) dominated in the river discharge to the lake. Suspended solids in the rivers were rich in iron (Fe) so PIP was associated with Fe. A comparison of the concentrations at the river mouth and 4.5 km downstream showed that the concentrations of SRP and PIP were lower at 4.5 km downstream than at the river mouth, whereas the concentrations of organic P (i.e., dissolved organic phosphorus and particulate organic phosphorus) were similar. The results from solution ³¹P nuclear magnetic resonance spectroscopy of lake water showed that pyrophosphate was only present in the particulate fraction, while orthophosphate diesters (DNA-P) were only present in the dissolved fraction. Riverine samples contained orthophosphate (ortho-P) only, while lake samples contained ortho-P, orthophosphate monoesters, and DNA-P. The results suggest that the P forms, particularly those of dissolved P, shifted from inorganic to organic forms as the water was discharged from the river to the lake.
显示更多 [+] 显示较少 [-]Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus 全文
2020
Li, Wei | Li, Bengang | Tao, Shu | Ciais, Philippe | Piao, Shilong | Shen, Guofeng | Peng, Shushi | Wang, Rong | Gasser, Thomas | Balkanski, Yves | Li, Laurent | Fu, Bo | Yin, Tianya | Li, Xinyue | An, Jie | Han, Yunman
The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH₃) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. ³¹P nuclear magnetic resonance tests (³¹P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1–2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.
显示更多 [+] 显示较少 [-]Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.) 全文
2020
Chang, Xulu | Wang, Xianfeng | Feng, Junchang | Su, Xi | Liang, Junping | Li, Hui | Zhang, Jianxin
Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-β was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.
显示更多 [+] 显示较少 [-]The potential role of sediment organic phosphorus in algal growth in a low nutrient lake 全文
2019
Ni, Zhaokui | Wang, Shengrui | Cai, Jingjing | Li, Hong | Jenkins, Alan | Maberly, Stephen C. | May, Linda
The role of sediment–bound organic phosphorus (Pₒ) as an additional nutrient source is a component of internal P budgets in lake system that is usually neglected. Here we examined the relative importance of sediment Pₒ to internal P load and the role of bioavailable Pₒ in algal growth in Lake Erhai, China. Lake Erhai sediment extractable Pₒ accounted for 11–43% (27% average) of extractable total P, and bioavailable Pₒ accounted for 21–66% (40%) of Pₒ. The massive storage of bioavailable Pₒ represents an important form of available P, essential to internal loads. The bioavailable Pₒ includes mainnly labile monoester P and diester P was identified in the sequential extractions by H₂O, NaHCO₃, NaOH, and HCl. 40% of H₂O−Pₒ, 39% of NaHCO₃−Pₒ, 43% of NaOH−Pₒ, and 56% of HCl−Pₒ can be hydrolyzed to labile monoester and diester P, suggesting that the bioavailability of Pₒ fractions was in decreasing order as follows: HCl−Pₒ > NaOH−Pₒ > H₂O−Pₒ > NaHCO₃−Pₒ. It is implied that traditional sequential fractionation of Pₒ might overestimate the availability of labile Pₒ in sediments. Furthermore, analysis of the environmental processes of bioavailable Pₒ showed that the stabler structure of dissloved organic matter (DOM) alleviated the degradation and release of diester P, abundant alkaline phosphatase due to higher algal biomass promoted the degradation of diester P. The stability of DOM structure and the degradation of diester P might responsible for the spatial differences of labile monoester P. The biogeochemical cycle of bioavailable Pₒ replenishs available P pools in overlying water and further facilitate algal growth during the algal blooms. Therefore, to control the algal blooms in Lake Erhai, an effective action is urgently required to reduce the accumulation of Pₒ in sediments and interrupt the supply cycle of bioavailable Pₒ to algal growth.
显示更多 [+] 显示较少 [-]Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa 全文
2019
Wang, Zhenhong | Gui, Herong | Luo, Zhuanxi | Zhen, Zhuo | Yan, Changzhou | Xing, Baoshan
Only limited information is available on the effects of dissolved organic phosphorus (DOP) on arsenate (As(V)) bioaccumulation and biotransformation in organisms. In this study, we examined the influence of three different DOP forms (β-sodium glycerophosphate (βP), adenosine 5′-triphosphate (ATP), and D-Glucose-6-phosphate disodium (GP) salts) and inorganic phosphate (IP) on As(V) toxicity, accumulation, and biotransformation in Microcystis aeruginosa. Results showed that M. aeruginosa utilized the three DOP forms to sustain its growth. At a subcellular level, the higher phosphorus (P) distribution in metal-sensitive fractions (MSF) observed in the IP treatments could explain the comparatively lower toxic stress of algae compared to the DOP treatments. Meanwhile, the higher MSF distribution of arsenic (As) in M. aeruginosa in the presence of DOP could explain the higher toxicity with lower 96-h half maximal effective concentration (EC50) values. Although we observed As(V) and P discrimination in M. aeruginosa under IP treatments with high intracellular P/As, we did not find this discrimination under the DOP treatments. As accumulation in algal cells was therefore greatly enhanced by DOP, especially βP, given its lower transformation rate to phosphate compared to ATP and GP in media. Additionally, As(V) reduction and, subsequently, As(III) methylation were greatly facilitated in M. aeruginosa by the presence of DOP, particularly GP, which was confirmed by the higher relative expression of its two functional genes (arsC and arsM). Our findings indicate that As(V) accumulation and its subsequent biotransformation were enhanced by organic P forms, which provides new insight into how DOP modulates As metabolism in algae.
显示更多 [+] 显示较少 [-]Seasonal variation and deposition of atmospheric organophosphate esters in the coastal region of Shanghai, China 全文
2022
Ma, Yuxin | Luo, Yuchen | Zhu, Jincai | Zhang, Jinghua | Gao, Guoping | Mi, Wenying | Xie, Zhiyong | Lohmann, Rainer
The coastal megacity Shanghai is located in the center of the Yangtze River Delta, a dominant flame retardants (FRs) production region in China, especially for organophosphate esters (OPEs). This prompted us to investigate occurrence and seasonal changes of atmospheric OPEs in Shanghai, as well as to evaluate their sources, environmental behavior and fate as a case study for global coastal regions. Atmospheric gas and particle phase OPEs were weekly collected at two coastal sites - the emerging town Lingang New Area (LGNA), and the chemical-industry zone Jinshan Area (JSA) from July 2016–June 2017. Total atmospheric concentrations of the observed OPEs were significantly higher in JSA (median of 1800 pg m⁻³) than LGNA (median of 580 pg m⁻³). Tris(1-chloro-2-propyl) phosphate (TCPP) was the most abundant compound, and the proportion of three chlorinated OPEs were higher in the particle phase (55%) than in the gas phase (39%). The year-round median contribution of particle phase OPEs was 33%, which changed strongly with seasons, accounting for 10% in summer in contrast to 62% in winter. Gas and particle phase OPEs in JSA exhibited significant correlations with inverse of temperature, respectively, indicating the importance of local/secondary volatilization sources. The estimated fluxes of gaseous absorption were almost 2 orders of magnitude higher than those of particle phase deposition, which could act as sources of organic phosphorus to coastal and open ocean waters.
显示更多 [+] 显示较少 [-]Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations 全文
2022
He, Xinyue | Zhang, Tao | Niu, Yingqi | Xue, Qing | Ali, Esmat F. | Shaheen, Sabry M. | Tsang, Daniel C.W. | Rinklebe, Jörg
The effects of catalytic hydrothermal (HT) pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques. Therefore, a catalytic HT process was employed to pretreat swine manure without additives (manure-HT) and with H₂O₂ addition (manure-HT- H₂O₂) to improve the conversion efficiency of labile or organic phosphorus (P) to inorganic phase. Then, a Ca–Al layered double hydroxide hydrochar (Ca/Al LDH@HC) derived from corn cob biomass was synthesized and applied to enhance P sorption. Scanning electron microscopy (SEM), and three-dimensional excitation emission matrix (3D-EEM), X-ray photoelectron spectroscopy (XPS), P k-edge X-ray absorption near edge structure (XANES), were used to elucidate the mechanisms of P release and capture. The H₂O₂ assisted HT treatment significantly enhanced the release of inorganic P (251.4 mg/L) as compared to the untreated manure (57.2 mg/L). The 3D-EEM analysis indicated that the labile or organic P was transformed and solubilized efficiently along with the deconstruction of manure components after the H₂O₂ assisted HT pretreatment. Application of Ca/Al LDH@HC improved the removal efficiency of P from the derived P-rich HT liquid. This sorption process was conformed to the pseudo-second-order model, suggesting that chemisorption was the primary mechanism. The results of SEM and P k-edge XANES exhibited that Ca, as the dominated metal component, could act as a reaction site for the formation of phosphate precipitation. These results provide critical findings about recovering P from manure waste, which is useful for biowastes management and nutrients utilization, and mitigating unintended P loss and potential environmental risks.
显示更多 [+] 显示较少 [-]Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication 全文
2020
Guo, Minli | Li, Xiaolu | Song, Chunlei | Liu, Guanglong | Zhou, Yiyong
Dissolved phosphate (Pᵢ) can be released during resuspended sediments exposed to sunlight. However, the significance of this phenomenon in the process of eutrophication is not clear. In this study, the behavior of photo-induced Pᵢ release during sediment resuspension in shallow lakes with the different trophic states was investigated. The amount of photo-induced Pᵢ release in the sediment resuspension from Lake Liangzi, Lake Dong, Lake Tangxun and Lake Longyang in China was 0.013, 0.019, 0.032, and 0.048 mg/L, respectively, and increased as the trophic states of the lakes increased. The results of phosphorus speciation analysis showed that the phosphate monoester in the particulate phosphorus is the organic phosphorus species participated in the photochemical reaction. The steady-state concentration of hydroxyl radical (OH) in the sediment resuspension also increased along with the trophic states of lakes increased and dissolved organic matter (DOM), nitrate, and Fe³⁺ presented in sediment resuspension were the main photosensitizers for OH production. All these results indicate that the increase of trophic states of lakes leads to the accumulation of organic phosphorus and OH, resulting in more dissolved phosphate photo-released, which accelerate the eutrophication process in a form of positive feedback.
显示更多 [+] 显示较少 [-]Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes 全文
2020
Feng, Weiying | Yang, Fang | Zhang, Chen | Liu, Jing | Song, Fanhao | Chen, Haiyan | Zhu, Yuanrong | Liu, Shasha | Giesy, John P.
Characteristics and transformation of organic phosphorus in water are vital to biogeochemical cycling of phosphorus and support of blooms of phytoplankton and cyanobacteria. Using solution ³¹P nuclear magnetic resonance (NMR), combined with field surveys and lab analyses, composition and structural characteristics of dissolved phosphorus (DP), particulate phosphorus (PP) and organic P in algae were studied in two eutrophic lakes in China, Tai Lake and Chao Lake. Factors influencing migration and transformation of these constituents in lake ecosystems were also investigated. A method was developed to extract, flocculate and concentrate DP and PP from lake water samples. Results showed that orthophosphate (Ortho-P) constituted 32.4%–81.3% of DP and 43.7%–54.9% of PP, respectively; while monoester phosphorus (Mono-P) was 13.2%–54.0% of DP and 32.9%–43.7% of PP, respectively. Phosphorus in algae was mostly organic P, especially Mono-P, which was ≥50% of TP. Environmental factors and water quality parameters such as temperature (T), electrical conductivity (EC), pH, secchi depth (SD), dissolved oxygen (DO), chemical oxygen demand (CODcᵣ), chlorophyll-a (Chl-a), affected the absolute and relative concentrations of various P components in the two lakes. Increased temperature promoted bioavailable P (Ortho-P and Mono-P) release to the lake waters. The results can provide an important theoretical basis for the mutual conversion process of organic P components between various media in the lake water environment.
显示更多 [+] 显示较少 [-]Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis 全文
2019
Qu, Ying | Wang, Chao | Guo, Jinsong | Huang, Junjie | Fang, Fang | Xiao, Yan | Ouyang, Wenjuan | Lu, Lunhui
Phosphorus (P) is an essential nutrient element for biological growth that can contribute to eutrophication in aquatic ecosystems. Water trophic status and algae growth are primarily related to the content of bioavailable P, which is primarily related to enzymatically hydrolysable organic P(EHOP) and dissolved inorganic P(IP). In this study, soil samples from the water-level fluctuation zone (WLFZ) were collected from a tributary of the Three Gorges Reservoir (TGR) to characterize the properties of organic P(OP) fractions using solution ³¹P-nuclear magnetic resonance (NMR) and enzymatic hydrolysis. ³¹P-NMR showed that orthophosphate was the main part of the bioavailable P in the WLFZ soil and accounted for 80.4% of the NaOH-EDTA extractable total P (NaOH-EDTA TP), while phosphate monoester accounted for 60.5% of NaOH-EDTA extractable OP (NaOH-EDTA OP). The soil properties and replenishment from the mainstream of the Yangtze River to the Pengxi River have a certain effect on the content and distribution of P forms in the WLFZ soil of the tributary. The EHOP accounted for 28.1% of the NaOH-EDTA OP, and a significant positive correlation was observed between labile monoester P and EHOP and organic matter (OM). The water-soluble OP(H₂O-OP), bicarbonate-extractable OP(NaHCO₃-OP), and Fe- and Al-associated OP(Fe/Al-OP) were significantly hydrolyzed by phosphatase and thus exhibited great release potential. The ranking of the bioavailability of OP was Fe/Al-OP > H₂O-OP > NaHCO₃-OP. Phytate-like P were mainly found in H₂O-OP and NaHCO₃-OP, which indicated that periodic submersion–emersion cycles promoted the release of phytate-like P from Fe/Al-OP into the water column of the TGR. These observations suggest that when the external P input was effectively controlled, a huge risk of release of the internal OP from the WLFZ soil, and the biogeochemical cycling of the bioavailable P played an important role in maintaining the eutrophication of the reservoir.
显示更多 [+] 显示较少 [-]