细化搜索
结果 1-10 的 20
Low mercury levels in marine fish from estuarine and coastal environments in southern China
2014
Pan, Ke | Chan, Heidi | Tam, Yin Ki | Wang, Wen-Xiong
This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g−1 (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems.
显示更多 [+] 显示较少 [-]Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems
2013
Mostofa, Khan M.G. | Liu, Cong-Qiang | Vione, Davide | Gao, Kunshan | Ogawa, Hiroshi
Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans.
显示更多 [+] 显示较少 [-]High intake rates of microplastics in a Western Atlantic predatory fish, and insights of a direct fishery effect
2018
Ferreira, Guilherme V.B. | Barletta, Mario | Lima, André R.A. | Morley, Simon A. | Justino, Anne K.S. | Costa, Monica F.
Microplastic contamination was investigated in the gut contents of an economically important estuarine top predator, Cynoscion acoupa, according to spatiotemporal and ontogenetic use of a tropical estuary. Microplastic contamination was found in more than half of the analysed fish. Ingested microplastics were classified by type, colour and length with most of the particles consisting of filaments (<5 mm). Longer filaments were more frequently ingested in the upper estuary and smaller filaments in the lower estuary, as a result of differences in hydrodynamic forces and proximity to the probable input sources. The river is likely an important source of filaments to the estuary and filaments ingested in the upper estuary showed little sign of weathering, when compared with those from the lower estuary, which are subject to intense weathering and consequent break-up of particles to smaller sizes. Most filaments, of all colours, accumulated in adults of C. acoupa, which are more susceptible to contamination through both direct ingestion and trophic transference as they shift their feeding mode to piscivory. Moreover, the highest ingestion of filaments in adults occurred in the lower estuary, during the late rainy season, likely associated with the intense fishing activities in this habitat, which results in a greater input of filaments from fishing gear, which are mainly blue in colour. Overall, 44% of the ingested filaments were blue, 20% purple, 13% black, 10% red and 12% white. The next most common colour, the purple filaments, are most likely blue filaments whose colour has weathered to purple. Red filaments were proportionally more ingested in the lower estuary, indicating a coastal/oceanic source. White and black filaments were more commonly ingested in the inner estuary, suggesting that they have a riverine origin and/or were actively ingested by juveniles and sub-adults, which inhabit the inner estuary and have zooplankton as an important food resource.
显示更多 [+] 显示较少 [-]State of corals and coral reefs of the Galápagos Islands (Ecuador): Past, present and future
2018
Glynn, Peter W. | Feingold, Joshua S. | Baker, Andrew | Banks, Stuart | Baums, Iliana B. | Cole, Julia | Colgan, Mitchell W. | Fong, Peggy | Glynn, Peter J. | Keith, Inti | Manzello, Derek | Riegl, Bernhard | Ruttenberg, Benjamin I. | Smith, Tyler B. | Vera-Zambrano, Mariana
Coral populations and structural coral reefs have undergone severe reductions and losses respectively over large parts of the Galápagos Islands during and following the 1982–83 El Niño event. Coral tissue loss amounted to 95% across the Archipelago. Also at that time, all coral reefs in the central and southern islands disappeared following severe degradation and eventual collapse due primarily to intense bioerosion and low recruitment. Six sites in the southern islands have demonstrated low to moderate coral community (scattered colonies, but no carbonate framework) recovery. The iconic pocilloporid reef at Devil's Crown (Floreana Island) experienced recovery to 2007, then severe mortality during a La Niña cooling event, and is again (as of 2017) undergoing rapid recovery. Notable recovery has occurred at the central (Marchena) and northern islands (Darwin and Wolf). Of the 17 structural reefs first observed in the mid-1970s, the single surviving reef (Wellington Reef) at Darwin Island remains in a positive growth mode. The remainder either degraded to a coral community or was lost. Retrospective analyses of the age structure of corals killed in 1983, and isotopic signatures of the skeletal growth record of massive corals suggest the occurrence of robust coral populations during at least a 500-year period before 1983. The greatest potential threats to the recovery and persistence of coral reefs include: ocean warming and acidification, bioerosion, coral diseases, human population growth (increasing numbers of residents and tourists), overfishing, invasive species, pollution, and habitat destruction. Such a diverse spectrum of disturbances, acting alone or in combination, are expected to continue to cause local and archipelago-wide mortality and degradation of the coral reef ecosystem.
显示更多 [+] 显示较少 [-]Benthic surveys of the historic pearl oyster beds of Qatar reveal a dramatic ecological change
2016
Smyth, D. | Al-Maslamani, I. | Chatting, M. | Giraldes, B.
The study aimed to confirm the presence of historic oyster banks of Qatar and code the biotopes present. The research also collated historical records and scientific publications to create a timeline of fishery activity. The oyster banks where once an extremely productive economic resource however, intense overfishing, extreme environmental conditions and anthropogenic impacts caused a fishery collapse. The timeline highlighted the vulnerability of ecosystem engineering bivalves if overexploited. The current status of the oyster banks meant only one site could be described as oyster dominant. This was unexpected as the sites were located in areas which once supported a highly productive oyster fishery. The research revealed the devastating effect that anthropogenic impacts can have on a relatively robust marine habitat like an oyster bed and it is hoped these findings will act as a driver to investigate and map other vulnerable habitats within the region before they too become compromised.
显示更多 [+] 显示较少 [-]Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand
2015
Stuhldreier, Ines | Bastian, Pepe | Schönig, Eike | Wild, Christian
Coral reefs in the Gulf of Thailand are highly under-investigated regarding responses to anthropogenic stressors. Thus, this study simulated overfishing and eutrophication using herbivore exclosure cages and slow-release fertilizer to study the in-situ effects on benthic algae and invertebrate settlement in a coral reef of Koh Phangan, Thailand. Settlement of organisms and the development of organic matter on light-exposed and shaded tiles were quantified weekly/biweekly over a study period of 12weeks. Simulated eutrophication did not significantly influence response parameters, while simulated overfishing positively affected dry mass, turf algae height and fleshy macroalgae occurrence on light-exposed tiles. On shaded tiles, settlement of crustose coralline algae decreased, while abundances of ascidians increased compared to controls. An interactive effect of both stressors was not observed. These results hint to herbivory as actual key controlling factor on the benthic community, and fleshy macroalgae together with ascidians as potential bioindicators for local overfishing.
显示更多 [+] 显示较少 [-]Distribution and assessment of marine debris in the deep Tyrrhenian Sea (NW Mediterranean Sea, Italy)
2015
Angiolillo, Michela | Lorenzo, Bianca di | Farcomeni, Alessio | Bo, Marzia | Bavestrello, Giorgio | Santangelo, Giovanni | Cau, Angelo | Mastascusa, Vincenza | Cau, Alessandro | Sacco, Flavio | Canese, Simonepietro
Marine debris is a recognized global ecological concern. Little is known about the extent of the problem in the Mediterranean Sea regarding litter distribution and its influence on deep rocky habitats. A quantitative assessment of debris present in the deep seafloor (30–300m depth) was carried out in 26 areas off the coast of three Italian regions in the Tyrrhenian Sea, using a Remotely Operated Vehicle (ROV). The dominant type of debris (89%) was represented by fishing gears, mainly lines, while plastic objects were recorded only occasionally. Abundant quantities of gears were found on rocky banks in Sicily and Campania (0.09–0.12 debris m−2), proving intense fishing activity. Fifty-four percent of the recorded debris directly impacted benthic organisms, primarily gorgonians, followed by black corals and sponges. This work provides a first insight on the impact of marine debris in Mediterranean deep ecosystems and a valuable baseline for future comparisons.
显示更多 [+] 显示较少 [-]Climate change and the oceans – What does the future hold?
2013
Bijma, Jelle | Pörtner, Hans-O. | Yesson, Chris | Rogers, Alex D.
The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing.The interactive effects of this deadly trio mirrors similar events in the Earth’s past, which were often coupled with extinctions of major species’ groups. Here we review the observed impacts and, using past episodes in the Earth’s history, set out what the future may hold if carbon emissions and climate change are not significantly reduced with more or less immediate effect.
显示更多 [+] 显示较少 [-]Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico
2011
Ley-Quiñónez, C. | Zavala-Norzagaray, A.A. | Espinosa-Carreón, T.L. | Peckham, H. | Marquez-Herrera, C. | Campos-Villegas, L. | Aguirre, A.A.
Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89μgg⁻¹), followed by Selenium (10.92μgg⁻¹). The mean concentration of toxic metal Cadmium was 6.12μgg⁻¹ and 1.01μgg⁻¹ respectively. Mean concentrations of metals followed this pattern: Zn>Se>Ni>Cu>Mn>Cd>Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.
显示更多 [+] 显示较少 [-]Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance
2017
Paulino, Gustavo Vasconcelos Bastos | Félix, Ciro Ramon | Broetto, Leonardo | Landell, Melissa Fontes
Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community.
显示更多 [+] 显示较少 [-]