细化搜索
结果 1-10 的 132
Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride 全文
2022
Wang, Zhenfang | Yin, Sicheng | Chou, Qingchuan | Zhou, Dong | Jeppesen, Erik | Wang, Liqing | Zhang, Wei
Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days’ exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
显示更多 [+] 显示较少 [-]Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar 全文
2022
Fang, Guoge | Li, Jialing | Zhang, Chen | Qin, Fanzhi | Luo, Hanzhuo | Huang, Cheng | Qin, Deyu | Ouyang, Zenglin
Developing efficient catalysts for oxytetracycline (OTC) degradation is an ideal strategy to tackle environmental pollution, and advanced oxidation processes (AOPs) have been widely used for its degradation. However, the studies on the activation of periodate (PI) by biochar and its composites in recent years have been scarcely reported. In this study, we focused on the degradation of OTC by PI activation with manganese oxide/biochar composites (MnₓOy@BC). Experimental results showed that the OTC degradation rate of MnₓOy@BC/PI system reached almost 98%, and the TOC removal efficiency reached 75%. Various characteristic analysis proved that PI could be activated efficiently by surface functional groups and manganese-active species (Mn(II), Mn(III), and Mn(IV)) on biochar, and various reactive species such as singlet oxygen (¹O₂), hydroxyl radical (∙OH), and superoxide radical (O₂∙⁻) can be observed via radical quenching experiments. Based on this, three degradation pathways were proposed. Furthermore, MnₓOy@BC and PI were combined to degrade environmental pollutants, which achieved excellent practical benefits and had great practical application potential. We hope that it can provide new ideas for advanced oxidation processes (AOPs) applying for wastewater treatment in the future.
显示更多 [+] 显示较少 [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella 全文
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
显示更多 [+] 显示较少 [-]Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics 全文
2021
Li, Jia | Guo, Kai | Cao, Yingsong | Wang, Shengsen | Song, Yang | Zhang, Haibo
Microplastics are emerging contaminants and widely distributed in the environment. They are considered as a vector of numerous organic pollutants including antibiotics in aquatic environments and thereby influence their distribution and transport behaviors. However, the effects of microplastics on the environmental behavior of antibiotics in soils remain largely unclear. In this paper, the influence of polyamide (PA) microplastics on sorption and transport of the selected antibiotic [oxytetracycline (OTC)] in a sandy loamy soil was studied by performing batch and column experiments. Results show that PA microplastics increase the pH of reaction systems, which contributes to OTC sorption onto the tested soils. However, altering pH is not the key influencing mechanism because the overall sorption capacity decreases slightly after adding PA microplastics, which can be attributed to the dilution effect. Reduction of OTC sorption by adding microplastics promotes the migration of OTC in the tested soil, which could be demonstrated by the results of column experiments that the breakthrough of OTC occurs earlier with an increasing content of PA microplastics. According to the fitting parameters of HYDRUS−1D model, PA microplastics can affect the transport of OTC by altering the soil pore structure and dispersion coefficient. These results provide new insight into the interaction between microplastics and organic pollutants in soil environments.
显示更多 [+] 显示较少 [-]Prevalence of antibiotic resistance genes in wastewater collected from ornamental fish market in northern China 全文
2021
Liu, Xuan | Wang, Hua | Zhao, Huimin
Large amounts of antibiotics/disinfectants are used in the farming of ornamental fish so as to prevent and treat bacterial infection. This may exert considerable selection pressures on the prevalence and propagation of antibiotic resistance genes (ARGs). However, the levels of ARGs and their potential prevalence mechanism in the wastewater of the ornamental fish industry remains unclear. In this work, wastewater is collected from a representative ornamental fish market (OFM) that is located at the northern China to study the occurrence and abundance of 21 ARGs and 2 integrase genes. Results indicated that 15 different ARGs and 2 integrase genes are existent and prevalent in the wastewater of OFM, whereby concentrations range from 2.01 to 10.34 copies/L. Proteobacteria, Bacteroidetes, Verrucomicrobia, and Firmicutes are the predominant phyla in the wastewater samples. 17 species of human opportunistic pathogens are present with relative abundance of up to 0.01%, which suggests a considerable risk of pathogens acquiring and disseminating ARGs. Moreover, oxytetracycline, ciprofloxacin, norfloxacin, sulfadiazine, and chloramphenicol are most frequently detected in wastewater, with concentrations of up to 1150, 877, 514, 1970, and 1700 ng/L, respectively. Notably, good correlations have been determined among ARGs and antibiotics, non-antibiotic environmental factors in wastewater of OFM. This current study reveals, for the first time, that OFM is a previously unperceived reservoir for ARG prevalence in aquatic environment and water environmental factors (particularly antibiotics), and their induced shifts in the microbial communities are the key factors for distribution of ARGs in OFM.
显示更多 [+] 显示较少 [-]Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions 全文
2021
Kayani, Masood ur Rehman | Yu, Gan | Qiu, Yushu | Shen, Yao | Gao, Caixia | Feng, Ju | Zeng, Xinxin | Wang, Weiye | Chen, Lei | Su, Huang Li
A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish.
显示更多 [+] 显示较少 [-]Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems 全文
2021
Liu, Lin | Li, Jie | Xin, Yu | Huang, Xu | Liu, Chaoxiang
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7–1.5 μg/L and 1.0–1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6–14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34–45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10⁻²-6.34 × 10⁻¹), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 10⁰) compared to that of the other substrates (1.82 × 10⁰–2.27 × 10⁰), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
显示更多 [+] 显示较少 [-]Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine 全文
2020
Ramanayaka, Sammani | Manish Kumar, | Etampawala, Thusitha | Vithanage, Meththika
Macro (BC), colloidal (CBC) and nanobiochar (NBC) were examined for the particle size effect for adsorptive removal of oxytetracycline (OTC) and co-occurring nutrients, which are present in synthetic hydrolyzed human urine. The surface morphologies and functionality of biochars were characterized using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and Fourier Transform Infra-Red (FTIR) Spectroscopy. Experiments for the removal of OTC were performed at the natural pH (pH 9.0) of hydrolyzed human urine using solid-solutions of 3 types of chars (1 g/L) with a contact time of 5 h, at initial OTC concentration of 50 mg/L where isotherm experiments were investigated with OTC concentrations from 25 to 1000 mg/L. The highest maximum adsorption capacity of 136.7 mg/g was reported for CBC, while BC reported slightly low value (129.34 mg/g). Interestingly, NBC demonstrated a two-step adsorption process with two adsorption capacities (16.9 and 113.2 mg/g). Colloidal biochar depicted the highest adsorption for NH₄⁺, PO₄³⁻, and SO₄²⁻ nutrients. All 3 types of chars showed strong retention with a poor desorption (6% in average) of OTC in synthetic hydrolyzed urine medium. CBC and NBC demonstrated both physisorption and chemisorption, whereas the OTC removal by BC was solely via physisorption. Nevertheless, CBC biochar demonstrated the best performance in adsorptive removal of OTC and nutrients in hydrolyzed human urine and its capability towards wastewater treatment. As the removal of nutrients were low, the treated urine can possibly be used as a safe fertilizer.
显示更多 [+] 显示较少 [-]Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China 全文
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
显示更多 [+] 显示较少 [-]Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study 全文
2020
Zhu, Yitian | Liu, Kaiyong | Zhang, Jingjing | Liu, Xinji | Yang, Linsheng | Wei, Rong | Wang, Sufang | Zhang, Dongmei | Xie, Shaoyu | Tao, Fangbiao
Recently, the widespread use of antibiotic has raised concerns about the potential health risks associated with their microbiological effect. In the present study, we investigated 990 elderly individuals (age ≥ 60 years) from the Cohort of Elderly Health and Environment Controllable Factors in West Anhui, China. A total of 45 representative antibiotics and two antibiotic metabolites were monitored in urine samples through liquid chromatography electrospray tandem mass spectrometry. The results revealed that 34 antibiotics were detected in 93.0% of all urine samples and the detection frequencies of each antibiotic varied between 0.2% and 35.5%. The overall detection frequencies of seven human antibiotics (HAs), 10 veterinary antibiotics (VAs), three antibiotics preferred as HAs (PHAs), and 14 preferred as VAs (PVAs) in urines were 27.4%, 62.9%, 30.9% and 72.7%, respectively. Notably, the samples with concentrations of six PVAs (sulfamethoxazole, trimethoprim, oxytetracycline, danofloxacin, norfloxacin and lincomycin) above 5000 ng/mL accounted for 1.7% of all urine samples. Additionally, in 62.7% of urine samples, the total antibiotic concentration was in the range of the limits of detection to 20.0 ng/mL. Furthermore, the elderly individuals with the sum of estimated daily intakes of VAs and PVAs more than 1 μg/kg/day accounted for 15.2% of all participants, and a health risk related to change in gut microbiota under antibiotic stimulation was expected in 6.7% of the elderly individuals. Especially, ciprofloxacin was the foremost contributor to the health risk, and its hazard quotient value was more than one in 3.5% of all subjects. Taken together, the elderly Chinese people were extensively exposed to VAs, and some elderly individuals may have a health risk associated with dysbiosis of the gut microbiota.
显示更多 [+] 显示较少 [-]