细化搜索
结果 1-10 的 37
Soil amendments with ZnSO4 or MnSO4 are effective at reducing Cd accumulation in rice grain: An application of the voltaic cell principle
2022
Huang, Hui | Tang, Zhi-Xian | Qi, Hong-Yuan | Ren, Xiao-Tong | Zhao, Fang-Jie | Wang, Peng
Cadmium (Cd) contamination in paddy soil often results in elevated Cd concentrations in rice grain, which is a serious concern threatening food safety. Most of the Cd accumulated in rice grain is derived from its remobilization in paddy soil during the grain filling period when paddy water is drained. We have previously shown that the voltaic cell effect controls the oxidative release of cadmium sulfide (CdS) during the drainage period. Metal sulfides with lower electrochemical potentials than CdS can suppress the oxidation of CdS. In the present study, we tested whether amendments of ZnSO₄ or MnSO₄ could enhance the suppressive voltaic effect on Cd release and subsequent accumulation in rice grain. The one-time addition of ZnSO₄ (75 kg/ha Zn) decreased CaCl₂-extractable Cd concentrations in soils by 32–64% in pot experiments and by 16–30% in field trials during the drainage period. Consequently, Cd concentrations in brown rice were reduced by 74–87% and 60–72% in pot experiments and field trials, respectively. Importantly, this effect persisted in the second year without further addition. The amendment of MnSO₄ had similar effects in decreasing soil extractable Cd and Cd concentrations in brown rice. These effects were not attributed to the addition of sulfate. A single application of such doses of ZnSO₄ or MnSO₄ (e.g. 75–150 kg/ha Zn or Mn) only caused a marginal increase in soil Zn or Mn concentrations and had no significant impact on grain yield. Taken together, amendments of ZnSO₄ and/or MnSO₄ (at the rate of 75–150 kg/ha Zn and or Mn) formed a protective voltaic cell partner against the oxidative dissolution of CdS and thus were highly effective in reducing Cd accumulation in rice grain. This work provides a simple but effective method to decrease soil Cd availability during soil drainage and mitigate Cd accumulation in rice to ensure food safety.
显示更多 [+] 显示较少 [-]Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems
2022
Wang, Meng | Liu, Yongbing | Shi, Huading | Li, Shanshan | Chen, Shibao
As a redox-sensitive element, manganese (Mn) plays a critical role in Cd mobilization, especially in paddy soil. In an anoxic environment, the precipitation of Mn(II)-hydroxides specifically favors Cd retention, while draining the paddy fields results in substantial remobilization of Cd. However, how the change in Mn redox states during the periodical transit of anoxic to oxic systems affects Cd mobility remains unclear. In this study, we demonstrate that the radical effect generated during the oxidation of Mn(II)-hydroxides exerts a significant effect on the oxidative dissolution of Cd during the aeration of paddy soils. The extractable Cd concentration decreased rapidly during the reduction phases but increased upon oxidation, while Cd availability produced the opposite effect with soil pe + pH and the extractable Mn concentration. Inhibiting the oxidation of Mn(II)-containing phases by microbes suppressed the production of hydroxyl free radicals (•OH) and Cd mobilization in the drainage phase. Analysis of X-ray absorption spectroscopy and sequential extraction demonstrated that the transformation from the Mn phase of Mn(II) to Mn(III/IV) determines Cd solubility. Altogether, the oxidization of Mn(II)-hydroxides was associated with the generation of significant amounts of •OH. The dissolution of Mn(II)- incorporating phases lead to a net release of Cd into soils during soil aeration.
显示更多 [+] 显示较少 [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
显示更多 [+] 显示较少 [-]The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains
2020
Yan, HuiJun | Wang, Xuedong | Yang, Yuping | Duan, GuiLan | Zhang, Hongmei | Cheng, WangDa
Pollution by antimony (Sb) and arsenic (As) in soil can pose a great threat to human health. Straw-returning is widely applied to paddy fields for improving and remediating soil. A pot experiment was conducted to investigate the effect of straw-returning on Sb and As transformation and translocation in a soil–rice system. In this study, Sb and As co-contaminated soil was thoroughly mixed with different proportions (0, 0.5, 1, and 2%) of straw and used for growing rice plants through the entire growing stage in a pot experiment and 4 weeks in a microcosm experiment. The straw application significantly increased Sb and As mobility. The concentrations of total Sb and As in soil-pore water increased after the application of straw in most growing stages. The Sb volatilization in the pot and microcosm experiments was also stimulated by straw application. With the high dose of straw application (2%), the concentration of Sb in brown grain was reduced by 72% compared with the control, but As concentrations increased by around 77%. These findings provide a new perspective in that straw-returning could affect the behavior of both Sb and As in soil and reduce the Sb accumulation in brown grain and some guidance in the use of straw-returning in Sb-contaminated paddy soil.
显示更多 [+] 显示较少 [-]The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers
2020
Tang, Xianjin | Li, Luyao | Wu, Chuan | Khan, Muhammed Imran | Manzoor, Maria | Zou, Lina | Shi, Jiyan
Arsenic (As) has been recognized as one of the most toxic metalloids present in the surface soil contaminating food chain and posing threat to human life. Sulfur (S) fertilizer is often supplied in paddy soil for rice growth, but its impact on As mobility and related bacteria remains poorly understood. In this study, a pot experiment was set up with two different types of sulfur treatments (element sulfur and Na₂SO₄) to evaluate the effect of sulfur fertilizers on As speciation in porewater, As fractions in soil, As accumulation in rice plants. Besides, rhizosphere bacterial composition and functional genes that might influence As mobility were also studied. The results revealed that the addition of 150 mg/kg Na₂SO₄ decreased As(III) and As(V) concentrations in soil porewater at maturation stage by 77% and 64%, respectively. With the same sulfur content, Na₂SO₄ was more effective than element sulfur. The addition of sulfur fertilizers promoted rice growth and reduced As accumulation in shoots, further reduced As translocation from root to above-ground parts by 39–59%. The addition of sulfur fertilizers had little effect on genes involved in As metabolism. However, the relative abundance of Fe(III) and sulfate reduction related genera increased with the addition of 150 mg/kg Na₂SO₄, consistent with the increase of Fe(III) reducing bacteria Geobacteraceae and sulfate reducing gene dsrA. The phenomenon likely influenced the decrease of As concentrations in soil porewater and rice uptake. The outcomes indicate that promoting Fe- and S- reducing bacteria in the rhizosphere by sulfur fertilizers may be one way to reduce As risk in the soil-rice system.
显示更多 [+] 显示较少 [-]Lead was mobilized in acid silty clay loam paddy soil with potassium dihydrogen phosphate (KDP) amendment
2019
Xu, Qiao | Ye, Binhui | Mou, Xiaoyu | Ye, Jien | Liu, Wenyu | Luo, Yating | Shi, Jiyan
The immobilization effectiveness between Pb and phosphorus in soil varies with soil types. To clarify the effect of phosphate on the availability of Pb in agricultural soil, a culture experiment with three types of paddy soil was performed with potassium dihydrogen phosphate (KDP) added. EDTA, DGT and in-situ solution extraction methods were used to represent different available Pb content. Results showed that the concentration of EDTA-Pb in HN soil was slightly elevated after exogenous KDP added. The supplement of 300 mg/kg KDP significantly increased the content of soluble Pb in both acid silty clay loam soil and neutral silty loam soil (increased by 104.65% and 65.12%, respectively). However, there was no significant influence of KDP on the concentration of DGT extracted Pb. XANES results showed that Pb(OH)2, PbHPO4, humic acid-Pb and GSH-Pb were the major speciation of Pb in soil colloids. The proportion of Pb(OH)2 and humic acid-bounded Pb in soil colloids were elevated after exogenous KDP added. Our results indicated that there was a mobilization effect of KDP on Pb by increasing the amount of colloidal Pb in soil solution, especially in acid silty clay loam paddy soil. Such colloid-facilitated transport might promote the uptake of Pb in rice and pose a potential threat to human health.
显示更多 [+] 显示较少 [-]The interaction between particulate organic matter and copper, zinc in paddy soil
2018
Shi, Jiyan | Wu, Qianhua | Zheng, Cuiqing | Yang, Jianjun
Particulate organic matter (POM) acts as a metals sink in soil, but only a few studies focused on the interaction of POM and heavy metals in paddy soil. The aim of this study is to investigate the interaction between POM and Copper (Cu)/Zinc (Zn). Two levels of Cu (100, 400 mg kg⁻¹) and Zn (250, 500 mg kg⁻¹) were used in a soil culture experiment. Our results showed that POM was porous structure and varied in size. Hydroxyl and carboxyl involved in POM adsorption of Cu and Zn. Rhizosphere effects roughen the surface of POM and enhanced the capacity of POM on heavy metals absorption. Cu-humic (26.2–33.9%) and Cu-citrate (38.5–42.4%) were dominated in POM, and Cu-goethite (41.7–57.7%), Cu-sulphide (6.6–27.6%) was dominated in soil. Rhizosphere effects decreased the proportion of organic-bond Cu along with the increasing the proportion of Cu-sulphide in POM. Addition of Cu and Zn inhibited the degradation of POM but rhizosphere effects promoted. Carbon content was increased in POM by heavy metal and rhizosphere effects. Our findings indicated that POM tended to retain the heavy metals in soil and heavy metals inhibited the degradation of POM, however, rhizosphere effects decreased the stability of POM-metals interactions.
显示更多 [+] 显示较少 [-]Arsenic mitigation in paddy soils by using microbial fuel cells
2018
Gustave, Williamson | Yuan, Zhao-Feng | Sekar, Raju | Chang, Hu-Cheng | Zhang, Jun | Wells, Mona | Ren, Yu-Xiang | Chen, Zheng
Arsenic (As) behavior in paddy soils couples with the redox process of iron (Fe) minerals. When soil is flooded, Fe oxides are transformed to soluble ferrous ions by accepting the electrons from Fe reducers. This process can significantly affect the fate of As in paddy fields. In this study, we show a novel technique to manipulate the Fe redox processes in paddy soils by deploying soil microbial fuel cells (sMFC). The results showed that the sMFC bioanode can significantly decrease the release of Fe and As into soil porewater. Iron and As contents around sMFC anode were 65.0% and 47.0% of the control respectively at day 50. The observed phenomenon would be explained by a competition for organic substrate between sMFC bioanode and the iron- and arsenic-reducing bacteria in the soils. In the vicinity of bioanode, organic matter removal efficiencies were 10.3% and 14.0% higher than the control for lost on ignition carbon and total organic carbon respectively. Sequencing of the 16S rRNA genes suggested that the influence of bioanodes on bulk soil bacterial community structure was minimal. Moreover, during the experiment a maximum current and power density of 0.31 mA and 12.0 mWm−2 were obtained, respectively. This study shows a novel way to limit the release of Fe and As in soils porewater and simultaneously generate electricity.
显示更多 [+] 显示较少 [-]Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments
2017
Lin, Lina | Gao, Minling | Qiu, Weiwen | Wang, Di | Huang, Qing | Song, Zhengguo
The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC1 and FMBC2) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P < 0.05), and FMBC2 performed better than FMBC1 did. Furthermore, exposure to 2% FMBC2 decreased the total As concentration in the grain by 68.9–78.3%. The addition of FMBC increased the ratio of essential amino acids in the grain, decreased As availability in the soil, and significantly increased the Fe and Mn plaque contents. The reduced As accumulation in rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil.
显示更多 [+] 显示较少 [-]Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study
2016
Zhang, Youchi | Chen, Tingting | Liao, Yongkai | Reid, Brian J. | Chi, Haifeng | Hou, Yanwei | Cai, Chao
Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health.
显示更多 [+] 显示较少 [-]