细化搜索
结果 1-5 的 5
Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment
2021
Zhang, Yanyan | Whalen, Joann K. | Sauvé, Sébastien
Microcystins are cyanotoxins produced by many species of cyanobacteria. They are specific inhibitors of serine/threonine protein phosphatases and are phytotoxic to agricultural plants. This study used a formal meta-analysis to estimate the phytotoxicity and bioconcentration rates of agricultural plants exposed to microcystins, and the human health risk from consuming microcystin-contaminated plants. Among the 35 agricultural plants investigated, microcystins were most phytotoxic to durum wheat, corn, white mustard and garden cress. Leafy vegetables such as dill, parsley and cabbage could bioconcentrate ∼3 times more microcystins in their edible parts than other agricultural plants. Although the human health risk from ingesting microcystins could be greater for leafy vegetables than other agricultural plants, further work is needed to confirm bioconcentration of microcystins in realistic water-soil-plant environments. Still, we should avoid growing leafy vegetables, durum wheat and corn on agricultural land that is irrigated with microcystins-contaminated water and be attentive to the risk of microcystins contamination in the agricultural food supply.
显示更多 [+] 显示较少 [-]Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats
2021
Hassan, Marwa E. | Hassan, Rasha R. | Diab, Kawthar A. | El-Nekeety, Aziza A. | Hassan, Nabila S. | Abdel-Wahhab, Mosaad A.
Although the green synthesis of nanometals is eco-friendly, the toxicity or safety of these biosynthesized nanoparticles in living organisms is not fully studied. This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days which included the control group, ZnO-NP-treated group (25 mg/kg body weight (b.w.)), ETO-treated groups at low or high dose (50, 100 mg/kg b.w.), and the groups that received ZnO-NPs plus ETO at the two tested doses. Blood and tissue samples were collected for different assays. The results showed that carvacrol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were nearly spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin, and gum Arabic improved the antioxidant properties of ETO, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.
显示更多 [+] 显示较少 [-]Reuse of Stabilized Fowl Manure as Soil Amendment and Its Implication on Organic Agriculture Nutrition Management
2011
Posmanik, Roy | Sinay, Boaz Bar | Golan, Ramy | Nejidat, Ali | Gross, Amit
A major input in intensive organic agriculture is nutrient-rich liquid fertilizers. Guano and other fowl manure are frequently digested in water extracts, and the supernatant is supplied as fertilizer. The resultant manure biowaste (MBW) is commonly disposed of to the environment, posing potential pollution and health risks. The study aims were to determine two types of fowl MBWs for their chemical properties before and after lime treatment and to test their reuse potential as soil amendment. Guano and layer manure were digested, and the residues’ chemical properties were analyzed before and after lime treatment. MBWs were then air-dried and used as a soil amendment in a parsley-growing experiment. The lime-treated MBW composition met the European standards for high-quality biowaste compost. Both digested and lime-treated MBWs had residual nitrogen, 3% and 1% in guano and layer manure, respectively. Parsley grown in soil amended with layer MBW had 100% survival, high yield, and good crop quality compared with controls. Plants grown with soil amended with guano biowaste exhibited lower yield and only 50% survival. These findings indicate that the current practice of disposing guano biowaste to the environment may pollute soil and water bodies, while the land spread of lime-treated layer MBW is safe and may improve soil fertility.
显示更多 [+] 显示较少 [-]Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment
2016
Roba, Carmen | Roşu, Cristina | Piştea, Ioana | Ozunu, Alexandru | Baciu, Călin
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn > Cu > Pb > Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to Tăuții de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.
显示更多 [+] 显示较少 [-]Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L)
2017
Pereira, Ana L. | Azevedo, Joana | Vasconcelos, Vitor
Blooms of harmful cyanobacteria that synthesize cyanotoxins are increasing worldwide. Agronomic plants can uptake these cyanotoxins and given that plants are ultimately ingested by humans, this represents a public health problem. In this research, parsley and coriander grown in soil and watered through 7 days with crude extracts containing microcystins (MCs) or cylindrospermopsin (CYN) in 0.1–1 μg mL⁻¹ concentration range were evaluated concerning their biomass, biochemical parameters and uptake of cyanotoxins. Although biomass, chlorophylls (a and b), carotenoids and glutathione-S-transferase of parsley and coriander exposed to the crude extracts containing MC or CYN had shown variations, these values were not statistically significantly different. Protein synthesis is not inhibited in coriander exposed to MC or CYN and in parsley exposed to MC. Also, glutathione reductase (GR) and glutathione peroxidase (GPx) in parsley and coriander was not affected by exposure to MC, and in coriander, the CYN did not induce statistically significant differences in these two antioxidative enzymes. Only parsley showed statistically significant increase in protein content exposed to 0.5 μg CYN mL⁻¹ (3.981 ± 0.099 mg g⁻¹ FW) compared to control (2.484 ± 0.145 mg g⁻¹ FW), statistically significant decrease in GR exposed to 0.1 μg CYN mL⁻¹ (0.684 ± 0.117 nmol min⁻¹ mg⁻¹ protein) compared to control (1.30 ± 0.06 nmol min⁻¹ mg⁻¹ protein) and statistically significant increase in GPx exposed to 1 μg CYN mL⁻¹ (0.054 ± 0.026 nmol min⁻¹ mg⁻¹ protein) compared to 0.5 μg CYN mL⁻¹ (0.003 ± 0.001 nmol min⁻¹ mg⁻¹ protein). These changes may be due to the induction of defensive mechanisms by plants by the presence of toxic compounds in the soil or probably to a low generation of reactive oxygen species. Furthermore, the parsley and coriander leaves and stems after 10 days of exposure did not accumulate microcystins or cylindrospermopsin.
显示更多 [+] 显示较少 [-]