细化搜索
结果 1-4 的 4
How does drought affect native grasses’ photosynthesis on the revegetation of iron ore tailings?
2021
Rios, Camilla Oliveira | Siqueira-Silva, Advanio Inácio | Pereira, Eduardo Gusmão
The revegetation of areas degraded by iron ore mining is a difficult challenge mainly due to water availability and impoverished metal-rich substrates. We sought to understand the photosynthetic responses to drought of native tropical grasses Paspalum densum (Poir.) and Setaria parviflora (Poir.) grown in iron ore tailing. The grass P. densum presented better photosynthetic adjustments when grown in the iron ore tailing and S. paviflora in response to water stress. Both species accumulated iron above the phytotoxic threshold when grown in an iron ore tailing. The net photosynthesis, stomatal conductance, transpiration, and water use efficiency decreased followed by a reduction in leaf relative water content in response to water stress for both species. The photochemical efficiency of photosystem II only decreased at the point of maximum drought. At this point, the water-stressed grass grown in the iron ore tailing presented higher H₂O₂ concentrations, particularly S. parviflora. After rehydration, full recovery of photosynthetic variables was achieved with decreased malondialdehyde concentrations, increased catalase activity, and, consequently, decreased H₂O₂ concentrations in leaves for both species. The fast recovery of the native grasses P. densum and S. parviflora to drought in the iron ore tailing substrate is indicative of their resistance and potential use in the revegetation of impoverished mined areas with high iron content and seasonal water deficit.
显示更多 [+] 显示较少 [-]Cesium-137 Concentrations in Sediments and Aquatic Plants from the Pinios River, Thessalia (Central Greece)
2011
Sawidis, Thomas | Bellos, D. | Tsikritzis, L.
The levels of radioactive contamination by artificial radiocesium (137Cs) were evaluated in sediments and the commonest species of water plants. Specimens were collected from a range of biotopes along the Pinios River and its tributaries, during the years 1998 and 2010. The 137Cs concentrations within the above period clearly indicate that this radionuclide still decrease in the River Pinios. A marked decrease is also observed in comparison to our previous results in 1993. 137Cs concentration activities in the sediment are higher than in the plant material. In general, roots showed greater 137Cs concentration than leaves, while stems showed the lowest concentration. Significant differences in 137Cs concentrations were found among different species growing under similar environmental conditions. 137Cs content in collected aquatic plants was in the descending order: Ceratophyllum demersum L. > Myriophyllum spicatum L. > Paspalum pasalodes Scribner > Cladophora glomerata L. > Cyperus longus L. > Potamogeton nodosus Poiret. A comparison of the studied stations indicated that the southwest side of Thessalia plain, where the first two initial sampling stations of the Pinios River and the tributaries Enipeas and Kalentzis are situated, was highly contaminated. Low 137Cs concentrations were observed in the Titarisios tributary, originated from the northeast part of Thessalia plain, behind Mt. Olympus and the last sampling stations of the Pinios River.
显示更多 [+] 显示较少 [-]Soil-extractable phosphorus and phosphorus saturation threshold in beef cattle pastures as affected by grazing management and forage type
2014
Sigua, Gilbert C. | Chase, Chad C., Jr | Albano, Joseph
Grazing can accelerate and alter the timing of nutrient transfer, and could increase the amount of extractable phosphorus (P) cycle from soils to plants. The effects of grazing management and/or forage type that control P cycling and distribution in pasture's resources have not been sufficiently evaluated. Our ability to estimate the levels and changes of soil-extractable P and other crop nutrients in subtropical beef cattle pastures has the potential to improve our understanding of P dynamics and nutrient cycling at the landscape level. To date, very little attention has been paid to evaluating transfers of extractable P in pasture with varying grazing management and different forage type. Whether or not P losses from grazed pastures are significantly greater than background losses and how these losses are affected by soil, forage management, or stocking density are not well understood. The objective of this study was to evaluate the effect of grazing management (rotational versus “zero” grazing) and forage types (FT; bahiagrass, Paspalum notatum, Flugge versus rhizoma peanuts, Arachis glabrata, Benth) on the levels of extractable soil P and degree of P saturation in beef cattle pastures. This study (2004–2007) was conducted at the Subtropical Agricultural Research Station, US Department of Agriculture–Agricultural Research Service located 7 miles north of Brooksville, FL. Soil (Candler fine sand) at this location was described as well-drained hyperthermic uncoated Typic Quartzipsamments. A split plot arrangement in a completely randomized block design was used and each treatment was replicated four times. The main plot was represented by grazing management (grazing vs. no grazing) while forage types (bahiagrass vs. perennial peanut) as the sub-plot treatment. Eight steel exclosures (10 × 10 m) were used in the study. Four exclosures were placed and established in four pastures with bahiagrass and four exclosures were established in four pastures with rhizoma peanuts to represent the “zero” grazing treatment. The levels of soil-extractable P and degree of P saturation (averaged across FT and soil depth) of 22.1 mg kg⁻¹and 11.6 % in pastures with zero grazing were not significantly (p ≤ 0.05) different from the levels of soil-extractable P and degree of P saturation of 22.8 mg kg⁻¹and 12.9 % in pastures with rotational grazing, respectively. On the effect of FT, levels of soil-extractable P and degree of P saturation were significantly higher in pastures with rhizoma peanuts than in pastures with bahiagrass. There was no net gain of soil-extractable P due to the presence of animals in pastures with rotational grazing. Averaged across years, soil-extractable P in pastures with rotational grazing and with “zero” grazing was less than 150 mg kg⁻¹, the water quality protection. There had been no movement of soil-extractable P into the soil pedon since average degree of P saturation in the upper 15 cm was 14.3 % while the average degree of P saturation in soils at 15–30 cm was about 9.9 %. Overall, average extractable P did not exceed the crop requirement threshold of 50 mg P kg⁻¹and the soil P saturation threshold of 25 %, suggesting that reactive P is not a problem. Our study revealed that rhizoma peanuts and bahiagrass differ both in their capacity to acquire nutrients from the soil and in the amount of nutrients they need per unit growth. Rhizoma peanuts, which are leguminous forage, would require higher amounts of P compared with bahiagrass. The difference in the amount of P needed by these forages could have a profound effect on their P uptake that can be translated to the remaining amount of P in the soils. Periodic applications of additional P may be necessary especially for pastures with rhizoma peanuts to sustain their agronomic needs and to potentially offset the export of P due to animal production. Addition of organic amendments could represent an important strategy to protect pasture lands from excessive soil resources exploitation.
显示更多 [+] 显示较少 [-]Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.)
2007
Paz-Alberto, Annie Melinda | Sigua, Gilbert C. | Baui, Bellrose G. | Prudente, Jacqueline A.
BACKGROUND, AIMS AND SCOPE: The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. METHODS: The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg⁻¹ (37.5 kg ha⁻¹) and 150 mg kg⁻¹ (75 kg ha⁻¹) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. RESULTS: On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha⁻¹). Carabaograss had the lowest herbage mass production of 4.12 Mg ha⁻¹ and 5.72 Mg ha⁻¹ from soils added with 75 and 150 mg Pb kg⁻¹, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg⁻¹). This was followed by cogongrass (2.34 ± 0.52 mg kg⁻¹) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg⁻¹. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg⁻¹) to the soil. DISCUSSION: Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. CONCLUSIONS: The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. RECOMMENDATIONS AND PERSPECTIVES: High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks.
显示更多 [+] 显示较少 [-]