细化搜索
结果 1-10 的 63
Cadmium, lead, and mercury mixtures interact with non-alcoholic fatty liver diseases
2022
Nguyen, Hai Duc | Kim, Min-Sun
There is a scarcity of studies on the interactions between heavy metals and non-alcoholic fatty liver disease (NAFLD). Using a variety of statistical approaches, we investigated the impact of three common heavy metals on liver enzymes and NAFLD markers in a Korean adult population. We observed that cadmium, mercury, and lead all demonstrated positive correlations with liver enzymes and NAFLD indices. Our findings were mostly robust in secondary analysis, which included three novel mixture modeling approaches (WQS, qgcomp, and BKMR) as well as in silico investigation of molecular mechanisms (genes, miRNAs, biological processes, pathways, and illnesses). The 16 genes interacted with a mixture of heavy metals, which was linked to the development of NAFLD. Co-expression was discovered in nearly half of the interactions between the 18 NAFLD-linked genes. Key molecular pathways implicated in the pathogenesis of NAFLD generated by the heavy metal combination include activated oxidative stress, altered lipid metabolism, and increased cytokines and inflammatory response. Heavy metal exposure levels were related to liver enzymes and NAFLD indices, and cutoff criteria were revealed. More studies are needed to validate our findings and gain knowledge about the effects of chronic combined heavy metal exposure on adult and child liver function and the likelihood of developing NAFLD. To reduce the occurrence of NAFLD, early preventative and regulatory actions (half-yearly screening of workers at high-risk facilities; water filtration; avoiding excessive amounts of seafood, etc.) should be taken.
显示更多 [+] 显示较少 [-]LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure
2021
Xiao, Tian | Zou, Zhonglan | Xue, Junchao | Syed, Binafsha Manzoor | Sun, Jing | Dai, Xiangyu | Shi, Ming | Li, Junjie | Wei, Shaofeng | Tang, Huanwen | Zhang, Aihua | Liu, Qizhan
Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 μM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-β1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.
显示更多 [+] 显示较少 [-]BPA modulates the WDR5/TET2 complex to regulate ERβ expression in eutopic endometrium and drives the development of endometriosis
2021
Xue, Wen | Yao, Xiong | Ting, Geng | Ling, Jin | Huimin, Liu | Yuan, Qiao | Chun, Zhou | Ming, Zhang | Yuanzhen, Zhang
Overexpression of estrogen receptor β (ERβ) in endometrium contributes to endometriosis (EM) pathogenesis. Trimethylation of the H3 lysine (K) 4 (H3K4me3) in promoters is strongly correlated with gene expression. This study aimed to explore the effects of bisphenol A (BPA) exposure on EM development from the perspective of the regulation of ERβ expression in eutopic endometrium via the H3K4me3-related epigenetic pathway. A mouse EM model was established to investigate the effects of BPA. Immortalized human normal endometrial stromal cells (iESCs) were cultured and treated with BPA to explore the underlying mechanism. Eutopic endometria from patients with or without EM were collected and analyzed. Results showed that BPA elevated ERβ expression in mouse eutopic endometrium and promoted lesion growth. BPA also promoted WD repeat domain 5 (WDR5) expression and upregulated H3K4me3 levels in the ERβ promoter and Exon 1. Further research indicated that WDR5 interacted with tet methylcytosine dioxygenase 2 (TET2), while BPA exposure enhanced the interaction between these two proteins, promoted the recruitment of the WDR5/TET2 complex to the ERβ promoter and Exon 1, and inhibited DNA methylation of CpG islands. The WDR5/TET2 interaction was essential for BPA-induced ERβ overexpression. Enhanced WDR5/TET2 interaction was also observed in eutopic endometria from EM patients. Further results showed that BPA upregulated WDR5 expression through the G protein-coupled estrogen receptor (GPER)-mediated PI3K/mTOR signaling pathway. In conclusion, our study suggests that BPA exposure promotes EM development by upregulating ERβ expression in eutopic endometrium via the WDR5/TET2-mediated epigenetic pathway.
显示更多 [+] 显示较少 [-]Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution
2021
Zhang, Jushan | Cheng, Haoxiang | Wang, Dongbin | Zhu, Yujie | Yang, Chun | Shen, Yuan | Yu, Jing | Li, Yuanyuan | Xu, Shunqing | Song, Xiaolian | Zhou, Yang | Chen, Jia | Fan, Lihong | Jiang, Jingkun | Wang, Changhui | Hao, Ke
Nitrate is a major pollutant component in ambient PM₂.₅. It is known that chronic exposure to PM₂.₅ NO₃⁻ damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution.We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM₂.₅ NO₃⁻ exposure were characterized at bulk-tissue and single-cell resolution.PM₂.₅ NO₃⁻ exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m³), exposure significantly (FDR<10%) altered 95 genes’ expression. Among the genes associated with respiratory functions, a large fraction (74.6–91.7%) were significantly perturbed by PM₂.₅ NO₃⁻ exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM₂.₅ NO₃⁻ exposure.This study extended our knowledge of PM₂.₅ NO₃⁻ exposure’s effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM₂.₅ NO₃⁻ exposure and subsequent pulmonary disease risks.
显示更多 [+] 显示较少 [-]β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis
2020
Chu, Yanru | Gao, Yanhui | Yang, Yanmei | Liu, Yang | Guo, Zining | Wang, Limei | Huang, Wei | Wu, Liaowei | Sun, Dianjun | Gu, Weikuan
Excess fluoride in drinking water is an environmental issue of increasing worldwide concern, because of its adverse effect on human health. Skeletal fluorosis caused by chronic exposure to excessive fluoride is a metabolic bone disease characterized by accelerated bone turnover accompanied by aberrant activation of osteoblasts. It is not clear whether Wnt/β-catenin signaling, an important signaling pathway regulating the function of osteoblasts, mediates the pathogenesis of skeletal fluorosis. A cross-sectional case-control study was conducted in Tongyu County, Jilin Province, China showed that fluoride stimulated the levels of OCN and OPG, resulting in accelerated bone turnover in patients with skeletal fluorosis. To investigate the influence of fluoride on Wnt/β-catenin signaling pathway, 64 male BALB/c mice were allotted randomly to four groups and treated with deionized water containing 0, 55, 110 and 221 mg/L NaF for 3 months, respectively. The results demonstrated that fluoride significantly increased mouse cancellous bone formation and the protein expression of Wnt3a, phospho-GSK3β (ser 9) and Runx2. Moreover, partial correlation analysis indicated that there was no significant correlation between fluoride exposure and Runx2 protein levels, after adjusting for β-catenin, suggesting that β-catenin might play a crucial role in fluoride-induced aberrant osteogenesis. In vivo, viability of SaoS2 cells was significantly facilitated by 4 mg/L NaF, and fluoride could induce the abnormal activation of Wnt/β-catenin signaling, the expression of its target gene Runx2 and significantly increased Tcf/Lef reporter activity. Importantly, inhibition of β-catenin suppressed fluoride-induced Runx2 protein expression and the osteogenic phenotypes. Taken together, the present study provided in vivo and in vitro evidence reveals a potential mechanism for fluoride-induced aberrant osteoblast activation and indicates that β-catenin is the pivot molecule mediating viability and differentiation of osteoblasts and might be a therapeutic target for skeletal fluorosis.
显示更多 [+] 显示较少 [-]Crohn’s disease and environmental contamination: Current challenges and perspectives in exposure evaluation
2020
Tenailleau, Quentin M. | Lanier, Caroline | Gower-Rousseau, Corinne | Cuny, Damien | Deram, Annabelle | Occelli, Florent
Although the incidence of Crohn’s disease has increased worldwide over the past 30 years, the disorder’s exact causes and physiological mechanisms have yet to be determined. Given that genetic determinants alone do not explain the development of Crohn’s disease, there is growing interest in “environmental” determinants. In medical science, the term “environment” refers to both the ecological and social surroundings; however, most published studies have focused on the latter. In environmental and exposure sciences, the term “environment” mostly relates to contamination of the biotope. There are many unanswered questions on how environmental hazards might contribute to the pathogenesis of Crohn’s disease. Which pollutants should be considered? Which mechanisms are involved? And how should environmental contamination and exposure be evaluated? The objective was to perform a systematic review of the literature on Crohn’s disease and environmental contamination. We searched the PubMed, Google Scholar, Scopus, ISI Web of Science and Prospero databases. We considered all field studies previous to April 2019 conducted on human health indicators, and evaluating exposure to all type of physical, biological and chemical contamination of the environment. The lack of clear answers to date can be ascribed to the small total number of field studies (n = 16 of 39 publications, most of which were conducted by pioneering medical scientists), methodological differences, and the small number of contaminants evaluated. This make it impossible to conduct a coherent and efficient meta-analysis. Based on individual analysis of available studies, we formulated five recommendations on improving future research: (i) follow up the currently identified leads - especially metals and endocrine disruptors; (ii) explore soil contamination; (iii) gain a better knowledge of exposure mechanisms by developing transdisciplinary studies; (iv) identify the most plausible contaminants by developing approaches based on the source-to-target distance; and (v) develop registries and cohort-based analyses.
显示更多 [+] 显示较少 [-]Double-edged effects of noncoding RNAs in responses to environmental genotoxic insults: Perspectives with regards to molecule-ecology network
2019
Huang, Ruixue | Zhou, PingKun
Numerous recent studies have underlined the crucial players of noncoding RNAs (ncRNAs), i.e., microRNAs(miRNAs), long noncoding RNAs(lncRNAs) and circle RNAs(circRNAs) participating in genotoxic responses induced by a wide variety of environmental genotoxicants consistently. Genotoxic-derived ncRNAs provide us a new epigenetic molecular–ecological network (MEN) insights into the underlying mechanisms regarding genotoxicant exposure and genotoxic effects, which can modify ncRNAs to render them “genotoxic” and inheritable, thus potentially leading to disease risk via epigenetic changes. In fact, the spatial structures of ncRNAs, particularly of secondary and three-dimensional structures, diverse environmental genotoxicants as well as RNA splicing and editing forma dynamic pool of ncRNAs, which constructs a MEN in cells together with their enormous targets and interactions, making biological functions more complicated. We nonetheless suggest that ncRNAs have both beneficial(positive) and harmful(negative) effects, i.e., are “double-edged” in regulating genotoxicant toxic responses. Understanding the “double-edged” effects of ncRNAs is of crucial importance for our further comprehension of the pathogenesis of human diseases induced by environmental toxicants and for the construction of novel prevention and therapy targets. Furthermore, the MEN formed by ncRNAs and their interactions each other as well as downstream targets in the cells is important for considering the active relationships between external agents (environmental toxicants) and inherent genomic ncRNAs, in terms of suppression or promotion (down- or upregulation), and engineered ncRNA therapies can suppress or promote the expression of inherent genomic ncRNAs that are targets of environmental toxicants. Moreover, the MEN would be expected to be would be applied to the mechanistic explanation and risk assessment at whole scene level in environmental genotoxicant exposure. As molecular biology evolves rapidly, the proposed MEN perspective will provide a clearer or more comprehensive holistic view.
显示更多 [+] 显示较少 [-]Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia
2016
Zhang, Qiong | Huang, Yinping | Zhang, Keke | Huang, Yanjun | Yan, Yan | Wang, Fan | Wu, Jie | Wang, Xiao | Xu, Zhangye | Chen, Yongtao | Cheng, Xue | Li, Yong | Jiao, Jinyu | Ye, Duyun
With increased industrial development, cadmium is an increasingly important environmental pollutant. Studies have identified various adverse effects of cadmium on human beings. However, the relationships between cadmium pollution and the pathogenesis of preeclampsia remain elusive. The objective of this study is to explore the effects of cadmium on immune system among preeclamptic patients and rats. The results showed that the cadmium levels in the peripheral blood of preeclamptic patients were significantly higher than those observed in normal pregnancy. Based on it, a novel rat model of preeclampsia was established by the intraperitoneal administration of cadmium chloride (CdCl2) (0.125 mg of Cd/kg body weight) on gestational days 9–14. Key features of preeclampsia, including hypertension, proteinuria, placental abnormalities and small foetal size, appeared in pregnant rats after the administration of low-dose of CdCl2. Cadmium increased immunoglobulin production, mainly angiotensin II type 1-receptor-agonistic autoantibodies (AT1-AA), by increasing the expression of activation-induced cytosine deaminase (AID) in B cells. AID is critical for the maturation of antibody and autoantibody responses. In addition, angiotensin II type 1-receptor-agonistic autoantibody, which emerged recently as a potential pathogenic contributor to PE, was responsible for the deposition of complement component 5 (C5) in kidneys of pregnant rats via angiotensin II type 1 receptor (AT1R) activation. C5a is a fragment of C5 that is released during C5 activation. Selectively interfering with C5a signalling by a complement C5a receptor-specific antagonist significantly attenuated hypertension and proteinuria in Cd-injected pregnant rats. Our results suggest that cadmium induces immune abnormalities that may be a key pathogenic contributor to preeclampsia and provide new insights into treatment strategies of preeclampsia.
显示更多 [+] 显示较少 [-]Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens
2015
Jovanović, Boris | Whitley, Elizabeth M. | Kimura, Kayoko | Crumpton, Adam | Palić, Dušan
Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration of nano-TiO2 (2 ng g−1 and 10 μg g−1 body weight, respectively), and were challenged with common fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 significantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phagocytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology, and infectious disease pathogenesis in any animal model has not been described before. By modulating fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2 has the potential to affect fish survival in a disease outbreak.
显示更多 [+] 显示较少 [-]Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro
2019
Zhou, Tianyu | Hu, Yan | Wang, Yunxia | Sun, Chao | Zhong, Yijue | Liao, Jiping | Wang, Guangfa
Fine particulate matter (PM₂.₅) is an essential risk factor of chronic obstructive pulmonary disease (COPD). Recent studies showed weak association between PM₂.₅ and COPD incidence, but smokers who exposed to higher PM₂.₅ concentration had more opportunity to gain COPD. Cigarette smoking is the most important risk factor of COPD. Thus, we hypothesized: the role of PM₂.₅ played on cigarette-inflamed airways was more significant than normal airways. The study firstly established an animal model of C57BL/6J mice with cigarette smoke exposure and PM₂.₅ orotracheal administration. After calculating pathological scores, mean linear intercept and mean alveolar area, we found PM₂.₅ aggravated pathological injury of cigarette-inflamed lungs, but the injury on normal lungs was not significant. Meanwhile, inflammatory factors as T-bet, IFN-γ and IL-1α were tested using qRT-PCR and ELISA. The results showed PM₂.₅ aggravated inflammation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. The most important pathogenesis of COPD is abnormal apoptosis in airway epithelium, due to oxidative stress following long-term exposure to cigarette smoke. Then, apoptotic responses were detected in lungs. TUNEL analysis demonstrated that PM₂.₅ promoted DNA fragmentation of cigarette-inflamed lungs, but the effect on normal lungs was not significant. Western-blot and immunohistochemistry showed caspase activated significantly in PM₂.₅-cigarette smoke exposed lungs and activated caspase 3 located mainly on bronchial epithelium. Next, human bronchial epithelial cells were cultured treated with cigarette smoke solution (CSS) with or without PM₂.₅. Z-VAD-FMK, a pan-caspase inhibitor, was used to suppress the activation of caspases. After analyzing cell viability, DNA fragmentation, mitochondrial activities and caspase activities, the results clarified that PM₂.₅ aggravated apoptosis in cigarette-inflamed bronchial epithelial cells and the responses could be suppressed by Z-VAD-FMK. Our results gave a new idea about the mechanism of PM₂.₅ on COPD and inferred cigarette-inflamed airways were more vulnerable to PM₂.₅ than normal airways.
显示更多 [+] 显示较少 [-]