细化搜索
结果 1-3 的 3
Comparison of Iodide and Iodate Accumulation and Volatilization by Filamentous Fungi during Static Cultivation
2017
Five common fungal strains, Cladosporium cladosporioides, Aspergillus clavatus, Penicillium citrinum, Fusarium oxysporum, and Alternaria alternata, were cultivated in presence of iodide and iodate to evaluate their efficiency in iodine biovolatilization and bioaccumulation. Our results suggest that iodide and iodate bioaccumulation by microscopic filamentous fungi is similar although the biological transformation into volatile iodine compounds is driven by various pathways resulting in higher volatilization efficiency of iodate. Thus, the mobilization of iodate by filamentous fungi is superior to iodide mobilization. Our paper is also the first to compare the iodide and iodate volatilization efficiency by microorganisms. Our results highlight the significant role of filamentous fungi in biogeochemistry of iodine, especially in formation of environmentally reactive volatile forms that may contribute to ozone layer destruction.
显示更多 [+] 显示较少 [-]PAHs Biodegradation by Locally Isolated Phanerochaete chrysosporium and Penicillium citrinum from Liquid and Spiked Soil
2024
Kiran Bishnoi, Pushpa Rani, Minakshi Karwal and Narsi R. Bishnoi
In the present study, biodegradation of polycyclic aromatic hydrocarbons (PAHs) was examined using two fungal strains, namely P. chrysosporium and P. citrinum, isolated from locally contaminated soil. These two fungal strains were compared based on degradation properties under standardized conditions (pH 7.0, temperature 30oC, carbon source yeast extract) using PAH sole and a mixture of five different PAHs. In liquid media, PAH degradation was higher as compared to spiked soil by P. chrysosporium, followed by P. citrinum. In liquid culture, maximum degradation was 96.13% phenanathrene, 86.34% fluoranthene, 72.75% pyrene, 52.25% chrysene, and 40.16% benzo(a)pyrene by P. chrysosporium. PAH degradation in spiked soil was 78.5% phenanthrene, 65.91% fluoranthene, 61.73% pyrene, 48.2% chrysene, and 26.82% benzo(a)pyrene within 28 days by P. chrysosporium. Both local fungal isolates showed potential for degradation of PAHs alone and in PAH mixtures.
显示更多 [+] 显示较少 [-]Biodegradation of pesticides using fungi species found in the aquatic environment
2015
Oliveira, B. R. | Penetra, A. | Cardoso, V. V. | Benoliel, M. J. | Barreto Crespo, M. T. | Samson, R. A. | Pereira, V. J.
Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.
显示更多 [+] 显示较少 [-]